DOI QR코드

DOI QR Code

Preparation and Characterization of N-doped Na2Ti6O13@TiO2 Composites for Visible Light Activity

가시광 활성을 위한 N-doped Na2Ti6O13@TiO2 복합체 제조 및 특성 연구

  • Duk-Hee, Lee (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Kyung-Soo, Park (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering)
  • 이덕희 (고등기술연구원 융합소재연구센터) ;
  • 박경수 (고등기술연구원 융합소재연구센터)
  • Received : 2022.12.14
  • Accepted : 2022.12.24
  • Published : 2022.12.28

Abstract

N-doped Na2Ti6O13@TiO2 (denoted as N-NTO@TiO2) composites are successfully synthesized using a simple two-step process: 1) ball-milling of TiO2 with Na2CO3 followed by heat treatment at 900℃; 2) mixing of the prepared Na2Ti6O13 with titanium isopropoxide and calcining with urea at 500℃. The prepared composites are characterized using XRD, SEM, TEM, FTIR, and BET. The N-NTO@TiO2 composites exhibit well-defined crystalline and anatase TiO2 with exposed {101} facets on the external surface. Moreover, dopant N atoms are uniformly distributed over a relatively large area in the lattice of the composites. Under visible light irradiation, ~51% of the aqueous methylene blue is photodegraded by N-NTO@TiO2 composites, which is higher than the values shown by other samples because of the coupling effects of the hybridization of NTO and TiO2, N-doping, and presence of anatase TiO2 with exposed {101} facets.

Keywords

Acknowledgement

본 논문은 산업통상자원부 월드클래스 300 R&D 프로젝트 기술개발사업의 지원으로 수행되었으며 이에 감사드립니다(P0012996).

References

  1. H. Li, Y. Zhou, W. Tu, J. Ye and Z. Zou: Adv. Funct. Mater., 25 (2015) 998. https://doi.org/10.1002/adfm.201401636
  2. Y. L. Liu, C. L. Yang, M. S. Wang, X. G. Ma and Y. G. Yi: Mater. Res. Bull., 107 (2018) 125. https://doi.org/10.1016/j.materresbull.2018.06.040
  3. X. Wang, Z. Zhang, Z. Huang, P. Dong, X. Nie, Z. Jin and X. Zhang: Mater. Res. Bull., 118 (2019) 110502. https://doi.org/10.1016/j.materresbull.2019.110502
  4. D. H. Lee, B. Swain, D. Shin, N. K. Ahn, J. R. Park and K. S. Park: Mater. Res. Bull., 109 (2019) 227. https://doi.org/10.1016/j.materresbull.2018.09.027
  5. Y. C. Chang, J. C. Lin and S. H. Wu: J. Alloys Compd., 749 (2018) 955. https://doi.org/10.1016/j.jallcom.2018.03.332
  6. C. Foo, Y. Li, K. Lebedev, T. Chen, S. Day, C. Tang and S. C. E. Tsang: Nat. Commun., 12 (2021) 661. https://doi.org/10.1038/s41467-021-20977-z
  7. S. Livraghi, M. C. Paganini, E. Giamello, A. Selloni, C. D. Valentin and G. Pacchioni: J. Am. Chem. Soc., 128 (2006) 15666. https://doi.org/10.1021/ja064164c
  8. J. Wang, D. N. Tafen, J. P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li and N. Wu: J. Am. Chem. Soc., 131 (2009) 12290. https://doi.org/10.1021/ja903781h
  9. C. Liu, T. Sun, L. Wu, J. Liang, Q. Huang, J. Chen and W. Hou: Appl. Catal. B: Environ., 170-171 (2015) 17. https://doi.org/10.1016/j.apcatb.2015.01.026
  10. L. I. Rodriguez, A. M. H. Flores and L. M. T. Martinez: Mater. Res. Bull., 122 (2020) 110679. https://doi.org/10.1016/j.materresbull.2019.110679
  11. J. Wang, J. Bi, W. Wang, Z. Xing, Y. Bai, M. Leng and X. Gao: J. Electrochem. Soc., 167 (2020) 090539. https://doi.org/10.1149/1945-7111/ab8fd6
  12. J. Y. Liao, T. W. Smith, R. R. Pandey, X. He, C. C. Chusuei and Y. Xing: RSC Adv., 8 (2018) 8929. https://doi.org/10.1039/C8RA00468D
  13. J. R. Salgado, E. Djurda and P. Fabry: J. Eur. Ceram. Soc., 24 (2004) 2477. https://doi.org/10.1016/j.jeurceramsoc.2003.07.014
  14. Y. Wang, G. Du, H. Liu, D. Liu, S. Qin, N. Wang, C. Hu, X. Tao, J. Jiao, J. Wang and Z. L. Wang: Adv. Funct. Mater., 18 (2008) 1131. https://doi.org/10.1002/adfm.200701120
  15. M. Kolaei, M. Tayebi and B. K. Lee: Appl. Surf. Sci., 540 (2021) 148359. https://doi.org/10.1016/j.apsusc.2020.148359
  16. X. Guo, H. Zhu and Q. Li: Appl. Catal. B: Environ., 160-161 (2014) 408. https://doi.org/10.1016/j.apcatb.2014.05.047
  17. C. Liu, J. Y. Liang, R. L. Han, Y. Z. Wang, Z. Zhao, Q. J. Huang, J. Chen and W. H. Hou: Phys. Chem. Chem. Phys., 17 (2015) 15165. https://doi.org/10.1039/C5CP01552A
  18. A. Piatkowska, M. Janus, K. Szymanski and S. Mozia: Catalyst, 11 (2021) 144. https://doi.org/10.3390/catal11010144
  19. X. Zhou, D. Zhong, H. Luo, J. Pan and D. Zhang: Appl. Surf. Sci., 427 (2018) 1183. https://doi.org/10.1016/j.apsusc.2017.08.149
  20. C. Wang, T. Ma, Y. Zhang and H. Huang: Adv. Funct. Mater., 32 (2021) 2108350.
  21. T. Y. Lee, C. Y. Lee and H. T. Chiu: ACS Omega, 3 (2018) 10225. https://doi.org/10.1021/acsomega.8b01251
  22. S. Kashiwaya, C. Olivier, J. Majimel, A. Klein, W. Jaegermann and T. Toupance: ACS Appl. Nano Mater., 2 (2019) 4793. https://doi.org/10.1021/acsanm.9b00729
  23. A. Payan, M. Fattahi, B. Roozbehani and S. Jorfi: Iran. J. Chem. Eng., 15 (2018) 3.
  24. R. Nawas, C. F. Kait, H. Y. Chia, M. H. Isa and L. W. Huei: Nanomaterials, 22 (2019) 1586.
  25. H. Cao, B. Li, J. Zhang, F. Lian, X. Kong and M. Qu: J. Mater. Chem., 22 (2012) 9759. https://doi.org/10.1039/c2jm00007e
  26. M. D. Permana, A. R. Noviyanti, P. R. Lestari, N. Kumada, D. R. Eddy and I. Rahayu: ChemEngineering, 6 (2022) 69. https://doi.org/10.3390/chemengineering6050069
  27. S. Zong, J. Liu, Z. Huang, L. Liu, J. Liu, J. Zheng and Y. Fang: J. Alloy Compd., 896 (2022) 163039. https://doi.org/10.1016/j.jallcom.2021.163039
  28. M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari and D. D. Dionysiou: Appl. Catal. B: Environ., 125 (2012) 331. https://doi.org/10.1016/j.apcatb.2012.05.036
  29. C. Liu, L. Wu, J. Chen, J. Y. Liang, C. S. Li, H. M. Ji and W. H. Hou: Phys. Chem. Chem. Phys., 16 (2014) 13409.