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ABSTRACT. In this paper, we define the G-Brauer algebras D? (z), where G is a cyclic
group, called cyclic G-Brauer algebras, as the linear span of r-signed 1-factors and the
generalized m, k signed partial 1-factors is to analyse the multiplication of basis elements
in the quotient I;€(z,2k). Also, we define certain symmetric matrices Li]k(:c) whose
entries are indexed by generalized m, k signed partial 1-factor. We analyse the irreducible
representations of D? (z) by determining the quotient I_f>G(1, 2k) of D? (z) by its radical.
We also find the eigenvalues and eigenspaces of ?2] . (z) for some values of m and k using

the representation theory of the generalised symmetric group. The matrices T,[,i]k(x) whose
entries are indexed by generalised m, k signed partial 1-factors, which helps in determining
the non semisimplicity of these cyclic G-Brauer algebras D? (z), where G = Z,.

1. Introduction

The invariant theory of classical groups, algebraic Lie theory, algebraic number
theory, knot theory, integrable models and statistical mechanics, quantum comput-
ing are the few areas of diagram algebras arising in different areas of mathemat-
ics and physics. In order to characterise invariants of classical groups acting on
tensor powers of the vector representations, Brauer [2] introduced a new class of
algebras called Brauer algebras. The Brauer algebras used graphs to represent its
basis. Hence it can be considered as a class of diagram algebras, that are finite
dimensional algebras whose basis consists of diagrams. These basis have interesting
combinatorial properties to be studied in their own right.

Parvathi and Kamaraj [10] introduced a new class of algebras called signed
Brauer algebras S;w) which are a generalization of Brauer algebras. Parvathi and
Selvaraj [12] studied signed Brauer algebras as a class of centraliser algebras, which
are the direct product of orthogonal groups over the field of real numbers R. Par-
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vathi and Savithri [11] introduced a new class of algebras called G-Brauer algebras
D? (x), where G is abelian, which are a generalization of signed Brauer algebras

S§cx) introduced by [10] and Brauer algebras.

Brown [3, 4], Hanlon and Wales [6, 7] and Wenzl [14] studied the Brauer al-
gebras by using diagrams to represent its basis and Young diagrams to represent
its irreducible representations. Brown has not discussed the structure of Brauer
algebras when the radical is non zero. This study was carried out by Hanlon and
Wales in [6]. They determined the structure of the radical of a non-semisimple
Brauer algebras by introducing the notion of 1-factor, m, k-partial 1-factor and the
combinatorially defined matrix Tﬁh x(2). In [7], they used these matrices to find the
eigen values and eigen vectors corresponding to Brauer’s centraliser algebras.

However for signed Brauer algebras, the eigen values corresponding to a non-
semisimple signed Brauer algebras have not been dealt completely. This motivated
us to study the eigen values for the signed Brauer algebras [13] and G-Brauer
algebras where G = Z,..

In this paper, we analyse the irreducible representations of D? (z) by determin-

ing the quotient I—;G(:zr, 2k) of D? (x) by its radical. We also find the eigenvalues

. . . . A
and eigenspaces of certain symmetric matrices ?Ln]k(x) for some values of m and

k using the representation theory of the generalised symmetric group. The matri-
ces Tr[: ]k () whose entries are indexed by generalised m, k signed partial 1-factors,

which helps in determining the non semisimplicity of these cyclic G-Brauer algebras
D? (x), where G = Z,. In this paper G refers to Z,, r > 0.

2. Preliminaries

We begin by recalling some known results in the representation theory of the
generalised symmetric group [1, 5, 8].

Definition 2.1. For each standard multi-tableaux [s] and [¢] of shape [}\],

mg =7 »_ o, =€ D([t])
UERM

where 7[s] = [t], D([t]) is the left coset representative of Ry, row stabiliser of [t].

(A]

Definition 2.2. For each multi-partition [A], there exists two sided ideals K and

KW of S,,, group algebras of the generalised symmetric group.

1. KM = Linear span {mqy / [s] and [t] are standard multi-tableaux of shape
[u] for [u] & [A]}.

2. K = Linear span {mqpy / [s] and [t] are standard multi-tableaux of shape
(1] for [1] > [N]}.
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=[]
3. 8

m

(A}

= Linear span{myy / [s] and [t] are standard multi-tableaux of shape

Remark 2.3. e For each multi-partition [A] of m, let ?[)‘] denote the Specht
module corresponding to [A] and let djy) denote the dimension of ?W.

~[A
e The ideal 5,, considered as a vector space of linear transformations of S
is the full matrix algebras End(g[)‘]).

Definition 2.4. There exists left ideals ?1,?2, .. .,?d[ right ideals 71,72,

AL

~IA N

ey 7dm and the unique minimal two sided ideal §m of S m, group algebras of the

=[]
generalised symmetric group. S, can be written either as direct sum of simple left
ideals
/)\P\] ? ?
Sm: 1D D FINY

or as a direct sum of simple right ideals

=[]
S :71@"'@7(1[)\]

m

where each ?1 is a left ideal of §m for which multiplication on the left gives a

representation isomorphic to ?[’\] and each 71 is a right ideal of §m for which

right multiplication is isomorphic to ?[)‘].

There exists a basis Ai,..., Aq,, for ?[)‘] with respect to which the matrices

Uiy (o) for o € S, acting on S are orthogonal. ie. U(o™!) = ¥y (o). For
=[N
any elements x;,y; € 5, ,1 < 1,7 < d[y}, choose z;,y; so that

. . Tyt lf.] =T
(1.1) LilYjTryi = { 0, otherwise.

3. The Structure of D? (x)

Definition 3.1. A r-signed 1-factor on 2f vertices is a signed diagram with f
vertices arranged in two rows and f, r—signed edges such that each vertex is incident
to exactly one r—signed edge, labeled by the primitive r**-root of unity &', £2, ..., €.
A r—signed edge is said to be an i—edge if it is labeled by &¢. The set of all r-signed
1—factor on 2 f vertices is denoted by PjG , where G is assumed to be a cyclic group.
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A r-signed 1-factor § € PfG will be represented as a diagram having two rows of
f vertices each, the f vertices in the top row are labeled by 1,2, ..., f from left to
right and the f vertices in the bottom row are labeled by f+ 1, f +2,...,2f from
left to right. There are r/(2f — 1)!! =7/ .1-3-.-(2f — 1) ways of joining these 2f
vertices which is incident to exactly to one r—signed edge.
2 Ig

Example 3.2. The 27 r-signed 1-factors in PzZS is as follows.

| 'k

2

*——o
*——o
*——o

3

*——o
*—e
Iy
*——O
*——o

€ €8

72 *—e
N
*—0

Iy

Iy

N}

s

N}

N

N}

XX XXX KXKX
sniien i s S S M S <

An r-signed edge of § € PjG is called r-signed horizontal edge if it joins two
vertices in the same row of ¢ € PfG

An r-signed edge of § € PfG is called r-signed vertical edge if it joins two vertices
in different rows of ¢ € Pf .

%
Definition 3.3. Let V; be the vector space over a field K with PjG as its basis.

%
Definition 3.4. Let V;(2k) =Linear span{é € PfG/the number of r—signed hori-

zontal edges in 0 > 2k}, k =0,1,..., {éJ which is a subspace of \7; \7;(216) can

be written as direct sum of vector subspaces V?(Qm), E<m< {%J spanned by all

r—signed 1—factors having exactly 2m r—signed horizontal edges.

Vi2k) =V (2K e Vi 2k +2) @, .oV (2 ED .

%
In the following, we make V; as an algebra over the field K(z), where K is any
field and « is an indeterminate, by defining composition of two elements §1, d2 € PfG .

For 41,02 € Pjg , the graph ﬁg; with 3f vertices arranged in three rows with
the first row, the top row of &1, the second row is obtained by identifying the
vertices in the bottom row of 4; with the vertices in the top row of d; and the third
row, the bottom row of d. The graph ﬁg; consists of exactly f, r-signed paths

P1, P2, ..., P, some number m;(d1,d2)) of i—cycles for i = 1,2,...,r such that

1. The r—signed path P; contains one or more r—signed edges. The initial and
endpoint of P; does not meet each other.
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2. Bach i—cycle is of even length consisting some number k; of i;—edges, 1 <
i; <r with > kji; = i( mod r), entirely of vertices lying in the middle row.

Example 3.5. For §1,02 € P5Z3, the diagram in ﬁg; is

o1

02

Definition 3.6. Let §; and 2 be r-signed 1-factors in PfG. Define the composition
of r—signed diagrams d; o §2 to be the r-signed 1—factor in the following way

1. The top (respectively bottom) row of d; 0d2 have the same r-signed horizontal
edges in the top (respectively bottom) row of d; (respectively ds).

2. The vertices v and v are adjacent if and only if there is a r-signed path P;
in g; joining v to v and an edge joining w to v is an i—edge if the path
contains some number k; of i;—edges, 1 <1i; <r with )" k;i; = i( mod ).

Definition 3.7. The cyclic G-Brauer algebra D? (x) is an associative algebras over
the field K[z] with basis PfG and the multiplication * of r-signed 1-factors given by

S imi(51,82)
01 % 09 = xi=1 o (01 0 62), where G = Z,

This algebras D? (z) is called the G-Brauer algebras defined in [11], when G = Z,.

Example 3.8. For 1,02 € P5Z?’, the diagram in §; * do is
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0 =
0o =
¢ ¢3
01 x0g =2 53 62

4. The Structure of Ideals If(:z:, 2k)

Let I]?(:v, 2k) =Linear span{d € PfG/number of r—signed horizontal edges in
d > 2k}. Clearly by the multiplication defined above IJ? (z,2k) is an ideal of D? (x).

Let .T;G (x,2k) =Linear span{d € PjG/number of r—signed horizontal edges in
d is equal to 2k}. I—;G(,T, 2k) denotes the quotient I?(:v, 2k)/I]§(x, 2k + 2).

%
To describe the structure of the quotients 17 (x, 2k) in terms of the eigenvalues
and eigenspaces of certain matrices.

Definition 4.1. A generalised m, k signed partial 1-factor on f = m + 2k vertices
is a r-signed diagram whose vertices are arranged in a single row with k, r-signed
horizontal edges and m free vertices.

Let Pﬁ . denotes the set of all generalised m, k signed partial 1-factors and let
Vncj_k be the real vector space with basis Pg_k.

The generalised symmetric group on m symbols {1,2,...,m} is denoted by S&.

Let us now define 7 € SG by n(i) = (7(i),0(i)) where o € S, and the func-
tion 7 : m — r, where m denotes the set {1,2,...,m} and r denotes the set
{£,€2,...,€7}, €Vs are primitive 7" root of unity.

Definition 4.2. Let f; (respectively f3) be generalised m, k signed partial 1-factors
with the free vertices of fi (respectively fa) is labeled by a1 < as < -+ < am
(respectively 81 < f2 < -+ < ).

The union of f; and fs is a r-signed graph obtained by identifying ¢ — th vertex
of f1 with the i —th vertex of f5 consists some number m;(f1, f2) of disjoint i-cycles
together with m disjoint r-signed paths Pq,...,P,, whose endpoints are in the set

{011,042,.. '7amaﬂ17525' o aﬂm}
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Definition 4.3. Let f1, fo € Pg)k. Define an inner product < fi, fa > on Vﬁ)k as
follows.

1. If any r-signed path P; joins a a; to a o; (or equivalently a 5; to a ;) then
< fi,f2>=0.

2. If each r-signed path P; joins 3; to ay; and some number k; of i; edges

1<i; <rwith > kji; = 7(i)(mod r), then

1=

S imi(f1.f2)
< f1, fo >=xi=t o m, where m = (1,0) € S’g,o € Sm.

NOTE. < fi, fo >=< f2F, ¥ >, where " is the anti-isomorphism defined on the
algebras KSS by 0 — o071, 0 € SS.

%
Proposition 4.4. Let f =m + 2k. Then the quotient I (x,2k) is isomorphic as
algebras to (V"ka ® Vncik ® KSS. ), where

(a@b@m) (c®d®m)=a®d® (m <b,c>7r2),a,b,c,d€Pg)k,ﬂ'l,m € S¢.

Proof. The proof follows as in [6]. Instead of m, k partial 1—factors and symmetric
group, the generalised m, k signed partial 1—factors and the generalised symmetric
group are used to prove the theorem, we give it here for the sake of completion.

As a vector space T;G(x,Qk) has basis the set of all r-signed 1-factors with
exactly 2k r-signed horizontal edges.

Consider the linear map ¢ : V.5, @ V.¢, @ KSG — I—;G(:C, 2k).

Given f1, f2 € PY,, we define ¢(f1 ® f2 ® o) to be the r-signed 1-factor on 2f
vertices in the followiflg way.

Let fi1 be the generalised m, k signed partial 1—factor with free vertices a; <
ag < -+ < oy and let fo be the generalised m, k signed partial 1—factor with free
vertices 81 < 2 < -+ < By, and given ¢ € S¢ such that

1. A r-signed horizontal edge joining i to j in the top row if and only if ¢ and j
are joined by an r—signed horizontal edge in fi.

2. A r-signed horizontal edge joining f + i to f + j in the bottom row if and
only if ¢ and j are joined by an r—signed horizontal edge in fo.

3. A r-signed vertical edge joining «; to B,(;) fori =1,2,---m.

The linear map ¢ defined in this way is clearly 1_—> 1 and onto. Hence it is a vector
space isomorphism of V.¢, ® V¢, ® KSS onto I;%(x,2k).
It remains to show that ¢ is multiplicative.

i.e ¢(di - do) = ¢(dr) 0 ¢(d2), dv,d2 € VS, @ VS, ® KSS.
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Let us now assume that di = a ® b® m and dy = ¢ ® d ® o where a,b,c,d be
the generalised m, k signed partial 1-factors with free vertices a1 < ag < -+ < ayy,

Bi<Po< - <Bm,M<v< < Yn, Y1 <P <--- <Yy, respectively and
G
7T1,7T2€Sm.

Consider the product in .T;G (z,2k)
S imi(di,d2)
$(dr) o p(do) == dy, dy € DS (x).

Case 1. Suppose there is a r-signed path joining a; to a; or ¥; to 9; in ﬁigjg;

then ¢p(a®@b@m)od(c@d®@m) =0 = ¢((a®@b@71)-(c®d®72)). Therefore
¢(dy - dz) = ¢(dy) © §(d2).

Case 2. Suppose there is a r-signed path joining a; to ¥, ;) in ﬁigj;; for i =

S imi (61,6
1,2,...,m, then ¢(dy) o o(da) = x5y = 4(dy - ).

Hence ¢ is an algebra isomorphism. O

5. The Structure of Ideals I—;G(:zr, 2k)

%
To describe the structure of the ring I;%(z,2k) in terms of the eigenvalues of
certain matrices.

Definition 5.1. Let T2V, () be the (pdjx))-by-(pdpy) matrix which is djy-by-djy,
blocks of p-by-p matrices where p is the number of generalised m, k signed partial
1—factors. The matrices in the each block are indexed by pairs of generalised
m, k signed partial 1-factors being (< b,c >), for the corresponding r-signed
1—factor.

Let ﬁ[)‘] denotes the null space of ?E]k(x), the matrix corresponding to gen-

eralised m, k signed partial 1—factors and the multi partition [A] and ﬁ[)‘] denotes

the range of ?E] (), the matrix corresponding to generalised m, k signed partial
1—factors and the multi partition [A].

5 ima) (bo) S ima(ed)
NoOTE. If < b,¢c >= zi= o then < ¢,b >= xi=t o~ So the matrix
Ez]k(:v) is symmetric.
Choose a basis vV, ..., u(™ for ﬁ[)‘] and an orthonormal basis of eigenvectors
oM ..., v for the nonzero eigenvalues p(V, ..., u(.

Definition 5.2. For given any left ideal ?t and a generalised m, k signed partial
1-factor d, define

7L(?t,d) = Linear Span {c®d® z/c € Pg)k,:v € ?t}
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Lemma 5.3. V(14 d) is a left ideal of 1}¢ (z, 2k).

Proof. The proof follows as in [6]. Instead of m, k partial 1—factors and symmetric
group, the generalised m, k signed partial 1—factors and the generalised symmetric
group are used to prove the theorem, we give it here for the sake of completion.

%
Forc®d®x e 7L(?t,d), choose & € 1;%(z,2k) such that § * (c® d ® z) not
equal to zero, that is § * (c® d ® z) and ¢ ® d ®  have same number of r—signed
horizontal edges.

(a@bem)*x(c@dx) = (a®d®7r<b,c>:v),7r€5’g,xe?t

i im; (b,c)
= (a®d®mxi=1 ma),

where 7, m € S,C,’;,x € Tt

i im;(b,c)
xi=1 (a®d®nma),

(rm1 € SE by the definition of S&)
Since x € ?t and ?t is a left ideal of §m, Y =Tmx € ?t. Hence

i im; (b,c)
(@a@bo™) * (c®d®z) = 25 (@@doy) e Vi(T,d).

Therefore 7L (?t, d) is a left ideal of I_;G (z,2k). O

Define WL(?t, d) C VL(?t, d) to be the linear span of all
> (W) (cwde Aiy) .

where u is in ﬁ[k] and Zi,t is the basis element of ?t corresponding to the basis

elergent Zl in ?[/\}, i.e. the linear span of the set of all elements mapped to zero
in 1;%(x,2k).

Proposition 5.4. Suppose v = ) (v)(c,i) (c®d® Xlt) € VL(?t,d). Let a,b
be generalised m,k signed partial 1-factors. For any o € SG, (a ® b® o)v =
a®d®o) . vjAj, wherey; is the (b, j) entry of ?Lﬂk(z)(v)

Proof. The proof follows as in [6]. Instead of m, k partial 1—factors and symmetric
group, the generalised m, k signed partial 1—factors and the generalised symmetric
group are used to prove the theorem, we give it here for the sake of completion.

@@bR0)* > Ve (c@d@ZM) = a®d®0oY v <be> A,

i im; (b,c)
= a®d®o Z(v)cﬁixizl o1t

a®d®2”yjzj,t
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where 01A4;; = A;; and ~; is the coefficient of XJ ¢ in Y vy < b,c> XJ .
By definition of ?[)‘] , the coeflicient of X +in < b,c> X ¢+ is the (b,7),
(c,1) entry of ? Thus ~y; is the (b, j) entry of ? x)(v). O

Proposition 5.5.
1. T3 (2, 2k)W (T4, d) = 0.
2. ?(v) = 7L(?t,d) for any v in 7L(?t,d) not in WL(?t,d).
3. vL(?t,d)/WL(?t,d) is irreducible as a left T;G(x,Qk) module.

Proof. The proof follows as in [6]. Instead of m, k partial 1—factors and symmetric
group, the generalised m, k signed partial 1—factors and the generalised symmetric
group are used to prove the theorem. We give it here for the sake of completion.

Suppose w is a generating element of W (?t,d) and «; is the (b,j) entry of
?[)‘] ). By the definition of W ? d), v; are all 0, for any (a®b®c). Hence
I; (x,zk)m_'}L(?t,d) —0.

Suppose v is in vL(?t,d) but not in WL(?t,d). Choose ~;, the (b,5)
entry of ?[’\]k(x)(v) is not 0. Then a ® b ® o(v) is not 0 Note that a and

o were arbitrary. Since ?t is an irreducible S,, module, the images under

o € S, of any nonzero vector in ?t generate all of ? Hence vectors of
the form (a ® b ® o) * Y v j) (c® d® Zj,t) generate all of vL(?t,d). Hence

Tw)=Vi(T.d).

The last part of the proof from the above two. O

Let W[)‘] @WL(?t,d) and . By Proposition 5.4, W[L)‘] is a nilpotent left
ideal of If (z,2k).
=[N
Recall that S,,, can also be written as a direct sum of right ideals
1y diny-
For given any right ideal ?t and a generalised m, k signed partial 1-factor a,
define

vR(?t,a) = Linear Span {a @ b® /b € Pﬁk,x € 71&}
Lemma 5.6. vR(7t,c) is a right ideal of I—;G(:E, 2k).
%
Proof. For c@ d®@ x € vR(?t,c), choose § € I;%(x,2k) such that (c® d® x) *§
not equal to zero, that is (c® d®z) * 6 have same number of signed horizontal edges

asinc®d® x.

(cRdRz)*x(a®@bm) = (c®b®x<d,a>ﬁ),ﬂ€$§,x€7t
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Z im;(d,a)
= (c®b®zxi=1 ),

where 7, m € Sﬁ,x € 7t

i im;(d,a)
= gi=t (c®b® xmm),

(mm € SS by the definition of S&)

Since z € 7t and 7t is a right ideal of §m, Yy =axmT E 7t,

E im;(d,a)
(c®d®z)*(@a®@b®T) = ot (c@b®y) e Val(Ts, o)
Therefore ? ? ¢) is a right ideal of If (x,2k). O

Define WR(7 ) C 7 7 ) to be the linear span of all

> (W) ey (a Rb® Zﬁ)

where ut?[ ] =0 and Zj)t is as before.
The same proofs used in Propositions 5.4 and 5.5 shows that

1. Wr(Js.a)o(c ®d®0):0
2. 7 7t, /W 7 ) is an irreducible right If (z,2k) module.
Deﬁne W =P W 7 +,a) and define WM to be the nilpotent 2-sided ideal

W — N Ww

%
Definition 5.7. Define DI to be the 2-sided ideal of I:%(x,2k) given by the
=[]
linear span of all vectors a ® b ® x, where a and b are arbitrary and = € S,

Note that I—;G(:v 2k) is the direct sum of the D,

Proposition 5.8. B /W[)‘] is canonically isomorphic to the full matriz ring
End( ﬁ[)‘] Recall that ™ is the range of ?m]k(x)

Proof. Instead of m, k partial 1—factors and symmetric group, the generalised m, k
signed partial 1—factors and the generalised symmetric group are used to prove the
theorem. We give it here for the sake of completion.

Given eigen vectors v(") and v(*) define

Zw™ v®)) = (H(T)N(S)) - Z (U(T)) _ (v(s))b a®b® zy;.
a,i J

Taking the product of Z(v(™,v()) and Z(v*),v(")) we obtain
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Z(v(”, v(s))Z(v(t),v(“))
_ (um MG u(u))‘l
3 (v“))w (W))w a®d® (U(S))b,j (”(t))c,k {ziy; <b,c>zryi}

(u(”u“’u“’uw)) - 3 (vm)a i (U(U))d |
a®d® ziy; (Z (U(S))bj {Z (v(t))ck <b,c> xk}> Y.

Now > (v(t))c)k < b,¢c >z = > Yz, where 7, is the (b,r) entry of ?Lﬁk(a@)v(t).

Since v(*) is an eigenvector with eigenvalue p(*), ~, = u® (v(t))m. So

- (Z (U(S)>b,j {Z (W))Qk <b,c> xk}> (7

= 2y (Z (U(S))byj {Z ”erﬂr}) Yl

= uIy (u@)m (v(”)bm {zayjery}

= gy, {Z (U(S))b } (v@))b } by equation 1.1
5J 5J

= u(t)xiylésyt by the orthonormality of the @

Therefore,

Z(™, o) 20 W)y = (Hmu(s)u(t)u(u))*lz(Um) _(v(”)dla@d@u“)mz&s,t

a,i

= 6S,tZ(v(r), v(u)).

Hence the subspace of B[’\] spanned by the Z(v(™), (%)) is isomorphic to End(ﬁ[’\] ).
O

~A
The ideal B[)‘] = Vncik ® V"Cj)k ® S, is isomorphic as a vector space to (Vncj,k ®
g[A])Q@(ng@?[)‘]) via the linear map f sending (C@ZO@(d@Xj) to cRdRx;y;.
Writing Vnﬁk ® ?W as ]—\/z[)‘] @ﬁ[)‘] we have, from Propositions 5.4, 5.5 and
5.8, that
A. f(ﬁ[)‘] @ VS, ® ?W) + VS, ® ?W) ® ﬁm) is contained in the radical of
Df () (2k)

B. f(ﬁ[)‘] ® ﬁ[k]) is a full matrix ring.
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The next theorem follows immediately from A and B.

Theorem 5.9. With notation as above:
1. Let W = f (ﬁw 2 (VS @ SN +(VS, 2 SV @ W). Then W is
the intersection of the radical of I—;G(:zr, 2k) with D,

2. B[)‘]/Wm is a full matriz ring which is canonically isomorphic to End(ﬁm).

6. Eigen Values for ?E;\L]k(:zr) when m =0 and f Is Even

In this section, we determine the eigen values of ?S(x), 5= % and f is even in
terms of representation of S?, the generalised symmetric group on f points. Here
we deal with the case s = f/2, the number of r—signed horizontal edges, when f is
even.

Let Fs be the set of all r-signed 1-factors on f points arranged in a single row
with exactly s = % horizontal edges. Let T ,(x)s,5, be the Fy x F, matrix whose
. (i kmk((si,(sj)> . .

(05,0;) entry is o \k=1 where my, is the number of k-cycles in §; U ;.

Example 6.1. Whenr =3, f =2 and s=1.

The eigen values are z(z — 1)vV22 +z + 1, —x(x — 1)vV22 + 2 + 1 and 23 + 2% + 2.

A generalised permutation o € S? induces a signed permutation of Fy by
permuting the i—edges of r-signed 1-factors. If p and ¢ are joined in §, then o(p)
and o(q) are joined in o(d), o € S?.

Suppose 01,2 € Fy and if C is a connected component of §; U d2, then o(Ch)
is a connected component of ¢(d1) U c(d2). In particular the number and size of
01 U2 and o(d1) Uo(d2) are the same.

Let Vs be the vector space with basis F. For o € S?, let P, be the generalised
permutation matrix corresponding to the generalised permutation of Fy induced by
o€ S?. In particular if o(6;) = §; and o(i) = (€¥, j), then P, has a £* in the Pj,5,
and 0's elsewhere in the §; row and §; column. Hence P, and ?5 () commutes to
give

P T (2) = Ty(2)P,.

The generalised permutation module has a decomposition as an S? module

into irreducible subspaces corresponding to irreducible representations of SfG. The

irreducible representations of S’JQ are indexed by multi partitions [A\] of f. The
irreducibles which occur as constituents of the generalised permutation module are
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indexed by even multi partitions [A] of f. Furthermore the multiplicity of each
representation is 1. This means that

V=Vi+Vat...V,

where V1, Vo, ..., V, are invariant subspaces of P,,Vo € SJ? and n is the number of

even multi partitions of f. As the irreducibles are distinct, 75(33)‘/1- C V;. As each
Vi is irreducible, ?S(,T) restricted to V; is a scalar, which is denoted by h;(z)I. In
order to find the eigen values for ?S(:v), it is necessary to determine the scalars for
?S(:C) restricted to V;. The multiplicity will be dimV;.

We determine these scalars h;(z) in terms of the multi partition associated with
the representation and the location of certain integers on a grid. Let A be the grid
and place the integer r(2j — i — 1) in the position i ** row and 2j ** column. It is
convenient to place the diagram of the even multi partition [A] on the grid A.

Residue i
Column No. : 1 2 3 4 5 6 7 8 9
0 2rg? 4rgl 6r&!
—r&t r&t 3rgd 5rel ,
A= —2rgt 0 2r€? 4rg?
—3rt —rgt r&t 3l
—4rt —2r¢t 0 2rg?

Let [A\] be a even multi partition of f with every partitions of [\] into even
parts. Let [A] = (A, A2 .. AM) where \U) is a partition of m; with length I;

where each )\gj),i =1,2,...,0;,j = 1,2,...,r is even, such that Y m; = f. Let
d=[dDV,d®,...,d")]. The diagram d*) corresponding to even partition A() on

A is
Residue 7

AV

A
Ay

A

There are exactly s = f/2 number of integers in A contained inside the bound-
ary of d, the diagram of the even multi partition [A].

Theorem 6.2. Let [\] = (AM, X®) . X)) be an even multi partition of f. Let
VN be the subspace of V; associated to the multi partition [\] and hy(z) = hpy(z).
Then .

iy (2) :H H Hsi’(Ir_kgi(rfl)xrfl+.'.+§ix+al(€il)) ’

i=1ded® k,l
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where |.| denotes modulus, al(;) are in the diagram d® of shape N fori=1,2,...,r
and

s - -1, if1§i<'L%J

! L if[g]<i<r

hiy () is a polynomial of degree v for the multipartition [\] = (AN, X A(M),

Proof. The proof follows as in the approach of [6]. Instead of 1—factors, even
partition standard tableaux and symmetric group, the r—signed 1—factors, multi
partitions multi standard tableaux and generalised symmetric group are used to
prove the theorem here. This is proved by induction on s = f/2. We give the proof
here for the sake of completion.

Let

dp(@) =TT IT II=

i=1ded( k,l

(.IT + é-i(rfl)xrfl 4.+ é-lx + a;gll))’ ,

where agfl) are in the diagram d¥ of shape A\(). We must show that hpy(z) =

diy(x). If s = 1, then there are r possible even multi partitions of f, in the
r tuple (2,0,0,...,0),(0,2,0,...,0),...,(0,0,...,0,2). ?s(ac) restricted to V; is
|si(z" + & r=Dgr=1 4 4 £2)| (1). Since the dimension of V;’s are one, the mul-
tiplicity of each h(x) will be one. Therefore hjyj(z) = dy () for s = 1. We suppose
that the theorem is true for all even multi partitions of f of size smaller than 2s.

Let [A\] be an even multi partition of f = 2s. Let [d] be the diagram of shape [)]
and ¢t be the standard Young multi-tableau with 1,2, ..., f are placed consecutively
in each row in the diagram of [A]. Let

e = ZE(U)UT,VU € Cy, 7 € Ry.

where Cpy is the column stabiliser of ¢ and R; is the row stabiliser of ¢, these are
the two subgroups of SJ?. For any v € V,|e;v| € VM. Furthermore e, affords the
representation corresponding to [A].

Let o be the r-signed 1-factor on {1,2,..., f} whose lines joins 2i — 1 to 2i, for
i=1,2,...,s. We will show that |e;:dp| has a nonzero dy coefficient v and |T;-(:)e;do|
has a nonzero &y coefficient, say pyj(z)u. As Ty.(z) acts as a scalar on VI and |e 6|
is in VP‘], PN (I) = h[)\] (:E)

If §; is a r-signed 1-factor in F,

?S(I)éz = Z x(ké1 kmk(‘;i*‘;j)> 5j
J

where my, is the number of k cycles formed in §; Ud; for which d; is in F;. Therefore,

3:< > kmk(0750150)) '

k=1

T o(2)o760| =
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Let uppy () be the 6o component of |?S(:1:)e[t]50|. Then

i kmk (G’T50,60)>

(11) ’Ulpp\](ir) = Zg(g):E(kl

Some of the terms in upyyj(z) gives the same expression. In particular, let Ry,
be the subgroup of R; which fixes Jp and let 7o be its order. That is, if 7 € Ry,
T150 = 50. Now for 7 in Rt, mk(O'TTléo,éo) = mk(UTéo,éo),Vk = 1,2, cee, T Let
R;/ Ry, be the set of right coset representatives for Ry, in R;. Therefore, equation
1.1 gives

E(U)x (kzi:l ke (‘7"'50750))

(1.2%]7@](.%‘) = [Z S; 1 ro,V o € Ct, T € Rt/RtO'

Let C, be the subgroup of C; which fixes dp and ¢g be its order. Furthermore,
all o0 € Cy, are even as the generalised signed permutation in each odd column
is identical to the generalised signed permutation in the column to its immediate
right as the line joining 2i — 1 to 2i is preserved. Let C;/Cy, be the set of left coset
representatives for Cy, in C;. Therefore, equation 1.2 gives

() (z) = lz E(J)I(élkmk(m%’éo)>

] T()C(),V S Ot/OtO,T S Rt/Rtg-

The argument above shows that ?S(az) restricted to VIV is a scalar pp (). We
need only to show that pyj(z) = djxj (7). We may also assume that for the diagrams
[A*] of smaller size, we have d[x-)(z) = pa+)(z) = h[x+)(z). Using equation 1.3, we
get

(Lo (z) = [Z

It is clear from the definition of Cy, that Cy, = CLY x C2) x ... x CI7) consists

of all generalised signed permutations in Cy, where C't(g ), 7 =12 ...,r—1 permutes
the 2i—1 column in the same way as 2 column in the j th residue with sign changes
& k=1,2,...,rfori= 1,2,...,)\1(5)/2, i=1,2,...,r—1 and Ct(or) permutes the
2i —1 column in the same way as 2i column in the 7 ** residue without sign changes
fori=1,2,...,\" /2.

Coset representatives may be chosen which fix the odd numbered column point-
wise in all the residues and permutes the even numbered column with sign change
& k=1,2,...,7in 1,2,...,r — 1 residue and with sign change ¢" in r ** residue.
The coset representatives in Cy/CY, are precisely the r-signed permutations acting
on even numbered columns. This is a full set as any element of C;, which is a

i kmy (o180,80)
E(O’)I(kzl § ’ 0> ,VO’ S Ot/CtO,TG Rt/Rtg-
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product of generalised signed permutations in Cy, followed by generalised signed
permutation in Ct(l) X Ct(2) X .o X Ct(r) moving only elements in even numbered
columns.

The choices for coset representatives of R:/R;, are not as natural. The group
(4)

R, is a direct product of groups R V j=1,2,...,r, where R;”’ permutes only
elements in the i—th row of the j* re51due j=1, 2, e, —1, RET) permutes only
elements in the i—th row of the 7" residue with sign changes ¢, k =1,2,...,r

and fixes all the other elements. Also Ry, is a direct product of groups R((le:),v j=
1,2,...,r where RY) = RY'NR,,, for j=1,2,...,r
L

Coset representatives may be chosen as products [] rirz...r;. where r;’s are

J

j=1
coset representatives for jo)/R(()JZ:) i =12,...,r
There arises the following two cases :
1. The s** horizontal edge lies in the j ** -residue, j = 1,2,...,r —1
2. The s*" horizontal edge lies in the r ™ residue.
Case 1. If s horizontal edge lies in the j ™ -residue, j =1,2,...,7r — 1

In order to prove the theorem for a fixed j we concentrate on (I}, )\l(j) -1)

and the (15, )\Z(JJ )) position. For convenience we call it the position as a and b.
In order to evaluate my (o070, 00), V k=1 to r, it is convenient to place the
lines from Jp in the diagram ¢.

Pictured this way 7dy is a diagram with lines all in the same row. Coset
representatives for jo)/Réz) may be picked anyway fori =1,2,...,[;—1. We

choose coset representatives for R(j ) / Rl(j()) by first restricting a group R(j )

a group Rz( 2, the subgroup of Rl( P fixing @ and b. Let Rl( ()J* be the subgroup

of Rl* ﬁxmg the r-signed 1— factor dg. Let Y be the set of representatives for

Rl(f)/Rl o+~ Let 7; be the r-signed transpositions in Rl(;) interchanging 2s — 1
and 2s — )\Z(JJ_) +ifori=1,2,..., )\l(j) — 2 and for i = 0, 79 is the identity. The
elements 7;Y are a full set of representatives of Rl(j ) / Rl(jz

We also wish to choose the coset representatives appropriately for the sub-
group of Cy moving elements in the )\Z(JJ )
by Cl(_j). Let Cl(f) be the subgroup of C(j) fixing the entry b. Let Z be the
set consisting of r-signed transpositions 0£ ,V kE=1,2,...,r where ng
terchanges b with the entry above it in the i — th row Wlth sign change &k i

b, fori=1,2,...,lj—1land k=1,2,...,7 and for i =0, ng is the identity
with sign change €.k = 1,2,...,r in b. Coset representatives for C’l(jj)/C’l(jjg

column only. Denote this subgroup

may be taken to be U’C'l(jjll,a’ € Z.
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Now let Cy» be the generalised signed permutations in Cy fixing a and b

and
Ct;;

Ri« be the generalised signed permutations in R; fixing ¢ and b. Let
and R be the corresponding stabilisers of dg fixing a and b. Choose

coset representatives L and M for Cf/C} and R;/Rj; . Now choose coset
representatives for Cy/Cy, as o'c,0’ € Z,0 € L. Coset representatives for

R,/

Ry, can be chosen as 7;7,7 € M. The coset representatives appearing in

equation 1.4 are

mg(o760,00) = mi(c'om;780,00),0' € Z,o € Lyt € M, k=1,2,...,7.

Hence the coset representatives appearing in equation 1.4 becomes

@ = > >

i kmy, (cr’a'TnTéo,éo))

E(U’U)x<k:1 , force L,T € M.

n,o'€eZ

Now we concentrate on the inner sum

i kmy, (cr’a'TnTéo,Jg)>

a(a’a)x<k:1 , foroce L,7e M.

Q=>.

T
Therefore we can write @ as Q = > Qﬁfm, where

(15)  QF = ’Za(ggg)x(m )

=1

i kmk(ofj 0TnT80,00)
, foroce LT e M,

To evaluate the inner sum we deal with the following four cases.

1
2
3.
4

. m and n both zero
.m=0andn #0
m#0andn =0

. m and n both non-zero

Subcase 1. For m and n both zero, equation 1.5 becomes

i km ((75[0'7'6 ,00)
(1.6) Qg; = ZE(Uglo)x<kl s T 0> , force L7 e M.

In this case both ¢ and 7 fixes @ and b. Let ¢*, 7* be the corresponding

restrictions of o and 7 to ?f_g. Let 63 be the restriction of 6o with {a, b}
omitted and let mj},k = 1,2,...,r be the corresponding inner product

l
on r-signed 1-factors of size f—2. The connected component of US oTdU
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8o is precisely the orbits of o*7*55UdE with {a, b} adjoined labeled by &L
Therefore ml(agloTéo, do) = mj(o* 765, 04) + 1 and my, (0310750, 8o) =
my(o*7*65,04) for k # 1 and k=1,2,...,r. Hence by equation 1.6, we
get

. i my (o*T*65,68)
Qg; = Zs(o*){““xlw<kl * o >, for o* € L and 7" € M.
Since e(0) = e(c*) and from the above equation Qg; = alpp (),
where [A*] is [A\] with /\l(;7 ) is replaced by )\l(f ) —2. We know by induction
that py+(x) = dpy+)(z). Therefore,

l .
(1.7) Q5o = E9aldpey ().
Subcase 2. For m = 0 and n # 0, equation 1.5 becomes

i km (UEZUTnT6 ,00)
(1.8) Qg;—ZE(UglU).I(kl o ’ 0>, foroc € L, € M.

Suppose n is fixed between 1 and )\l(j) — 2. For 0o € LT € M,
o*, 7,05, mp, k = 1,2,...,r be the corresponding restrictions to the
diagrams for [A\*] of size f — 2.

We will show that mk(aglarnnio,do) = my(c*7%6§,05), forall k =
1,2,...,r.

Let ¢ be the entry in (I;,n). Suppose ¢’ is joined in o7dg to d¢”. Note
that 07,7 is the same as o*7*0% except {a, b} has been added and the
lines from (cEi) to (dEi) is replaced by two lines one from (¢¢”) to b and
another from (d¢") to a. Tt is now clear that all orbits of o*7*35 U 83
not containing (c£”) and (d¢") is the orbit of O'ELO'T"T(SO U do.

The orbit containing (c£”) and (d¢") together with {a,b} is the orbit of
O'SZUTnT50 U dg. This shows that mk(USZUTnTéo, do) = my (o703, 65),
forall k =1,2,...,r.

Therefore, by equation 1.8, we get

! ! i km (o’*‘r*&*,é*))
gn:ZE(gg J)x(kzl : o , foro* € L and 7" € M.

Since (o) = (0™*) and from the above equation len = ppa-1(z), where

is wit ) is replace /) 2. We know by induction that
[\*] s [A] with A7 is replaced by A — 2. We know by ind h
P+ (@) = dix+1(z). Therefore,

1

(1.9) Q5 = dppej(@)-
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Subcase 3. For m # 0 and n = 0, equation 1.5 becomes

i km (Uin’T(; ,80)
(1.10) Q5= Zewﬁia)x(m eforiodn)

, foroce LT € M.

We will show that my (50760, 00) = ml(c*7*65,85), for all k = 1,2,
l

...,r. Form=1,2,...,l; — 1, we show that each is ano = —d+(7).

We need to consider the orbits of 0%0750 U dp where of; is the r-signed

transposition interchanging b with entry above it in the m'™ row and

/\l(;7 ) column, labeled by ¢'. Again we have to consider the restricted

term o*7*5;. Let & be the entry in (m, /\l(j)) position in o*7*§§ joined

to entry d¢* in o*1*05. The lines in af,iaTdo are precisely the lines in

o*17*64 except line from " to d&” is replaced by a line from d¢* to b

and one from a to c¢£”.

Again the orbits of o*7%65 U 05 are those of af,iarzSO U 6o except for

this one orbit through ¢¢” and d¢”. This shows that mk(aﬁioTéo, do) =

my(c*7*65,03), forall k=1,2,...,r.

Note £(0%,0) = —£(0*) = —&(0).

Therefore, by equation 1.10, we get

i kmy (o™ 1%65,85)
Qio——ZE(O’)I(kl * ’ 0>, for o* € L and 7" € M.
Hence by the above equation, we get erio = —pp+1(z), where [A*] is [)]
with /\l(j) is replaced by /\l(j) — 2. We know by induction that ppy-)(z) =
dia+1(x). Therefore,

1

(1.11) QS0 = —dpe (@)

Subcase 4. In this case both m # 0 and n # 0, we wish to show that
Q% = 0,V
The term in Qﬁl for a fixed m,n, o, 7 with m and n not equal to zero

mn»
1S

! (i kmk(0§i07n760,60)>
e(of,0)x \F=1 .
We will show that how to combine the terms for a fixed m into disjoint
subsets of size two. The sum over eac? of these subsets will be zero and
so the sum over all these terms in Q5,, will be zero.

In order to choose the subsets, we suppose m, o, 7,n are chosen with
both m and n both being not zero. Let (a’)¢” be the endpoint for the
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line joined in 0’;5;0'7'"7'50 to a and (0')¢" be the endpoint for the line
joined in U?TLLO'TnTéo to b. The point (a’)¢" must be left of a, since n # 0.
Suppose (a’)¢" and (b')¢" are in the even numbered column.

Let o/ = ()¢, (a)¢")o.

As e((B)¥", (@)%) = €, e(0f,0") = e(oh, (V) (@))0) = €he(0f,0).
The orbits of oﬁi(((b’)gq), (a")¢" o7, 700 U §y is the same as the orbits
of aféaTano U do except (a')¢” is the endpoint of b and (b')¢" is the
endpoint of a. Also the lengths of the orbits and the number of orbits
of both were same but their signs were opposite. Therefore they cancel
each other, such terms in Qf,lm cancels and the sum of those terms will
be zero.

Suppose (a’)¢” and (b')¢" are in the odd numbered column. Instead of
o we start with o/ = ((0')¢", (a’)§"), the same result holds using the
r-signed transpositions ((b*)¢", (a*)¢") where (a*)¢" is to the immedi-
ate right of (a’)¢” in the even numbered column and (b*)¢" is to the
immediate right of (b')¢" in the even numbered column.

Suppose (a’)¢" and (b')¢" are in different columns. Let € be the posi-

tion (7, )\l(j)) Note that ¢ and (1')&" are joined in 07, 78). This means

(07a7) "1 (c5") and (o7, 7)1 ((')$") are in the same row. Let d’ be the
entry such that o7,7(d’) is in the same row as ¢ and (V')¢" and in the
same column as (a')¢". As (a/)¢" and (V')¢" are in different columns,
(b)¢" is not d’. Denote the point joined to d’ in o7, 70y by (¢”). Note
that (o7,7)"'(¢") is in the same row as (o7,7) " ((0')¢"), (07 7) " (c)
and (07,7)71(d"). Let 7/ be the coset representative in M for which
7’00 = (07 m) (V)" (07 T) "2 ("))T0 700 for which 73,78 is the
same as 7,70 except that (o7,7)"1(c) is joined to (o7,7)"(¢") and
(o7, 7)1 (d') is joined to (o7, 7)1 (V/)E").

Assume now that (a/)¢" and (b')¢" are in different even numbered col-
umn. We examine the terms in the sum for the r-signed transposition

Tn, interchanges 2r—1 and f — )\l(f ) 41 and for the r-signed transposition
T) interchanges 2r—1 and f—)\l(j) +k corresponding to o’ (d, (a')" o™
and to o’o1,7. Note that s(agi(d’, (a")¢")o) = €Pje(oma). The orbits
of o (d, (a’)¢")orT60 U dp and the orbits of 0'75:107'”7'50 U dp are the
same except the ones through {a, b}, {(a’)¢", (t')"} and {d’,"}. (a')¢"
is joined in o€, (d', (a')¢" )oTeTdo to ¢ and (o) is joined in o, 07,700
to a and b is joined to (b')¢*. The orbits of those terms were same and
their signs were different, therefore they cancels each other. If (a’)¢"

and (b')¢" are in odd numbered column use the above result and this
proves sum of those terms will be zero. Hence,

(1.12) QL. =0.
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Thus, by equations 1.7, 1.9, 1.11 and 1.12, we get

)\(J) 2 A
Q = ZQ00+Z Z QO]+ZZQ +ZZQU
=1 i=1 =1 14,5

‘(;ﬂ +E0 DIy et 20— 2) — 2( - 1)dpey (:v)‘

From the definition of djyj(x) and djy«(x),

dp () ‘(xr +e0 T dr o0 —2) —2( - 1))‘ dir-1(2)

hp\] (ac)

J
hp\] (CL‘) = dm (CL‘) = H H Hsl
i=1ded® k,l

2. If s horizontal edge lies in the 7" residue, we may concentrate on the
1y, )\l(:) —1) and the (I, )\l(:)) positions. For convenience, we call it the position
as a and b. In order to evaluate my(o7dg,d0), for all k = 1,2,...,r, place

(ZCT +€i(T—1)xT—1 +§ x4 a(z))} .

the lines from §g in the diagram ¢. Coset representatives for RET) / Ré:) may
be chosen anyway for ¢ = 1,2,...,1. — 1. We choose coset representatives for

T)/R(T) by restricting to a group Rl(:), the subgroup of Rl(:) fixing a and b.

Let Rl(rg* be the subgroup of Rl(f ) ﬁxing the r-signed 1-factor dg. Choose Y a
set of representatives for R /Rl o+~ Let Y/ be the set consisting of r-signed
transpositions Tjg Jorall k=1,2,...,rof Rz(:) where Tfk
and 2r — )\l(:) + j with the sign change ¢* in 2r — 1 for j =1,2,..., )\l(f) - 2.

interchanges 2r — 1

k

For ¢ =0, Tg is the identity with the sign change £* in 2r — 1. The elements
7'Y, 7" € Y’ is the set of representatives for Rl(:) / Rl(:))

We also wish to choose the coset representatives for the subgroup of Cy moving
/\l(:) columns only. Denote this subgroup by C(T) Let le ) be the subgroup
of Clr) fixing b. Let o; be the r-signed transpositions interchanging b with the
entry above it in the i*" row for i = 0,1, ..., — 1. Coset representatives for
C’l(:) / Ol(:o) may be chosen as JiCl(jrzl where C’l(jTll interchanges )‘l(:)—l column.
Now let C} and R} be the subgroups of C; and R; fixing a and b respectively.
Let Cf and R} be the stabilisers of dy fixing a and b. Choose coset represen-
tatives L and M for Cf/Cf and R} /Rj,. Now choose coset representatives
for C;/Cy, as 0,0,0 € L. Coset representatives for R;/R;, can be chosen as
7'r,7 € Y',7 € M. The coset representatives appearing in equation 1.4 are

my (o700, 80) = my(o;07' 700, 0),
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where c € L7 € Y/, 7€ M and for all k =1,2,...,7r.

Hence the coset representatives appearing in equation 1.4 becomes

T
> kmy (0,07 760,00)

p[,\](a:)—ZZa(aia)x<kl >, for o € L, 7 € M.

Now we concentrate on the inner sum

i kmy, (0;07'780,00)
QzZs(am)x(kzl * ’ 0>, foroce L, € M.
We can also write Q as Q@ = 5_ Q5,,,, where
k=1
i km (crmcr‘rfllﬂré ,80)
(1.13) Q5 = Za(a)x<m ’ o ) for o € L,7 € M.

To evaluate the inner sum we deal with the following four cases.

1. m and n both zero
2. m=0andn#0

3. m#0and n=20
4

. m and n both non-zero
Subcase 1. For m = 0 and n = 0, equation 1.13 becomes

i km (07'ng6 ,00)
(1.14) Qg;_za(a)x<m s ) for o € L, € M.
In this case both ¢ and 7 fixes a and b. Let ¢*, 7* be the corresponding

restrictions of o and 7 to ?f_g. Let 6] be the restriction of §p with {a, b}
omitted and let m}, for all k = 1,2,...,r be the corresponding inner
products on r-signed 1-factors of size f — 2. The connected component

of 07517'60 UJdp is precisely the orbits of o*7*d§ U d§ with {a, b} adjoined
with sign change ¢'. Therefore ml(arngéo, do) = mi(c*T*6§ U 6S) + 1
and mk(0751750,50) = mj(o*7%65,05) for k # L and k = 1,2,...,7.
Hence by equation 1.14, we get

i km) (o*17%585,55)
QO;:ZE(U)xl:C<k1 * o ), for o™ € L and 7" € M.

Since e(0) = e(0*), Qg; = z'p-) (), where [A*] is [A] with )\l(:) replaced
by )\l(f) — 2. We know by induction ppy+j(z) = djx+(x) and so we get

(1.15) QS0 = 2'dp ().
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Subcase 2. For m = 0 and n # 0, equation 1.13 becomes

i kmy (omn780,00)
(1.16) QS;ZZE(U),T(’Cl ’ ’ 0), foroce L, € M.

Suppose n is fixed between 1 and )\l(:) — 2. For o € LT € M,
o*, 7,05, mi,k = 1,2,...,r be the corresponding restrictions to the
diagrams for [A\*] of size f — 2.

We will show that my (07,700, 00) = my(c*7%§,55), for all k = 1,2,
Cy T

Let ¢ be the entry in (I,,n) and TSZ be the r-signed transpositions in
Y’ which interchanges 2r — 1 and f — )\l(:) + j. Suppose ¢¢” is joined in
o*7*8g to d¢*. Note that 07,70y are the same as o*7*6; except {a,b}
has been added and the lines from ¢¢” to (d¢”) is replaced by two lines,
one from (¢)¢” to b and another from (d)¢" to a.

It is now clear that all orbits of *7*8% U8} not containing (¢)¢” and (d)&”
is the orbit of 07,769 Udy. The orbit containing (¢)¢” and (d)¢” together
with {a,b} is an orbit of 07,709 Udg. This shows that my(o7,7d0, o) =
my (c*1785,05), forall k =1,2,...,r.

Therefore, by equation 1.16, we get

i kmy (c*1765,85)
Qg;:ZE(o*)x<kl ’ ’ 0>, for ™ € L and 7" € M.

Since (o) = (™) and from the above equation len = pp-(z), where
[A*] is [A] with )\l(j ) is replaced by )\l(j ) _ 2. We know by induction that
P+ () = da+ (). Therefore,

(1.17) Q5 = dpney ().

Subcase 3. For m # 0 and n = 0, equation 1.13 becomes

s El
> kmy(omotg T60,00)

(1.18) Qf(l) = Zs(o)x<kl >, foroce L,7 € M.

We will show that mk(amarglréo,éo) = m}(c*7%0§,65), for all k =
1,2,...,r. Form=1,2,...,l, — 1 and show that each is —d[»](x).

We need to consider the orbits of O'WO'TEL Tdo Uy where o; is the r-signed

transposition interchanges b with entry above it in the m'" row and /\l(:)

column. Again we have to consider the restricted term o*7*4;. Let c
be the entry in (i, )\l(f)) position, ¢¢” is joined in o*T*d( to entry d¢" in

l
o*7*65. The lines in amm'g 7dp are precisely the lines in o*7*§; except
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line from ¢¢” to d¢” is replaced by a line from d¢” to b and one from a
to ¢&".

l
Again the orbits of o*7%5Udj are those of UmO'Tg TdoUdy except for this
1
one orbit through ¢ and d¢*. This shows that my, (omUTg 760,00) =

my(o*7*65,04), forall k=1,2,...,r.
Note e(opmo) = —e(0*) = —¢(0).
Therefore, by equation 1.18, we get

S Ko (0" 76765
= el EETER) e

1
‘ } S0 = —Ppe) (), where [\ is [
with )\l(]],) is replaced by )‘l(j-) — 2. We know by induction that ppy«(z) =
dia+1 (). Therefore,

Hence by the above equation, we get @

1

(1.19) Q50 = —dppey ().

Subcase 4. In this case both m # 0 and n # 0 , we wish to show that
QS =0,V
The term in fom, for a fixed m,n, o, 7 with m and n not equal to zero is

i km (UfyiO’TnT(; ,80)
s(af,ia)x<k:1 ’ o ) We will show that how to combine the

terms for a fixed m into disjoint subsets of size two. The sum over each
of these subsets will be zero and so the sum over all these terms in fom
will be zero.

In order to choose the subsets, we suppose m, o, 7,n are chosen with
both m and n both being not zero. Let (a’)¢” be the endpoint for the
line joined in 0’75;0'7'"7'50 to a and (0')¢" be the endpoint for the line
joined in UETLLUT"T(SO to b. The point (a’)¢" must be left of a, since n # 0.
Suppose (a’)&" and (b')¢" are in the even numbered column.

Let o/ = ()¢, (a')¢")o.

As e((B)F", (@)) = €, e(0f,0") = e(oh, (1), (@))0) = €he(0f,0).
The orbits of o5, (((1')$"), (a/)S")omaT80 U & is the same as the orbits
of af,iaTano U do except (a')¢” is the endpoint of b and (b')¢" is the
endpoint of a. Also the lengths of the orbits and the number of orbits
of both were same but their signs were opposite. Therefore they cancel
each other, such terms in Qf,lm cancels and the sum of those terms will
be zero.

Suppose (a’)¢” and (b')¢" are in the odd numbered column. Instead of
o we start with o/ = ((0')¢", (a’)§"), the same result holds using the
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r-signed transpositions ((b*)¢*, (a*)¢") where (a*)¢" is to the immedi-
ate right of (a/)¢" in the even numbered column and (b*)¢" is to the
immediate right of (b')¢" in the even numbered column.

Suppose (a’)¢" and (b')$* are in different columns. Let ¢¢* be the posi-
tion (7, )\(,)) Note that ¢£* and (b)¢" are joined in o7, 76y. This means

(oTnT)” (cE ) and (o7, 7) " ((b)¢") are in the same row. Let d’ be the
entry such that o7,7(d’) is in the same row as ¢ and (v')¢" and in the
same column as (a’)¢". As (a')¢" and (V')¢" are in different columns,
(b)§" is not d’. Denote the point joined to d’ in o7, 78 by (¢”). Note
that (o7,7)"'(c") is in the same row as (o7,7) " ((b')¢"),(o7n7) " (c)
and (07,7)71(d"). Let 7/ be the coset representative in M for which
77’00 = (07, m) (V)" (07 7) 1 (")) TuTdg for which 73,78 is the
same as 7,70 except that (o7,7)"*(c) is joined to (o7,7)"1(¢") and
(o7,7)~1(d') is joined to (o7, 7)1 (¥)E").

Assume now that (a’)¢" and (V')¢" are in different even numbered col-
umn. We examine the terms in the sum for the r-signed transposition
Tn, interchanges 2r—1 and f— )\l(j )
Tk, interchanges 2r—1 and f —/\l(j )
and to o’o7,7. Note that e(c$, (4, (a')$")o) = £Pje(opmo). The orbits
of p(d', (a')s")ompTdo U &y and the orbits of aﬁiaTano U dp are the
same except the ones through {a, b}, {(a’)¢", (t')¢"} and {d’,"}. (a')¢"
is joined in 0%, (d', (a')$" om0 to ¢ and (a')¢" is joined in oS, o7, 70
to a and b is joined to (V')¢". The orbits of those terms were same and
their signs were different, therefore they cancels each other. If (a’)¢"
and (b')¢" are in odd numbered column use the above result and this
proves sum of those terms will be zero. Hence,

(1.20) QS =

+n and for the r-signed transposition

+k corresponding to o’ (d’, (a/)¢" Yoy T

Thus, by equations 1.15, 1.17, 1.19 and 1.20, we get

AL — o1
0 = ZQOO+ZZQOJ+ZZQ +3°05%
=1 j=1 =1 i=1 i,

_ ‘(xuxriw...”m(xg —2)—2(lr—1))‘d[,\*](x)

From the definition of dpy(x) and djy«(x),

d

[

@) = [@ 42 20 = 2) = 20 = 1)] dipey () = By (@),

boste) = (o) =TT TT L[+ Do+ ofd)].

i=1ded(® k,l
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Therefore,

hiy(z) = H H H ’(xr + & Dgr=l 4 4+ agjl)) .

i=1ded() k,l

Hence the proof. O

Corollary 6.3. [6] Let [\] = (A1, Ae, ..., A\ be a partition of f with all \; even.
Let VIN be the subspace of Vi associated to the partition X and hy(x) = hi(z). Then

ha(@) = [[ (@ + aiy),
where a;; are in the diagram d of shape \.

Proof. The proof follows from the above theorem for r» = 1. O

Corollary 6.4. Let [A] = (A A0 0 AW XD AP AR be an even bi-
partition of f. Let VIN be the subspace of Vi associated to the bi-partition [\ and
hy(z) = hyy(z). Then

hin(@) = [[@* — 2+ a) [J( + 2+ af),

where ag;) are in the diagram dV of shape AV and a

shape A2

)

i are in the diagram d@ of

Proof. The proof follows from the above theorem for r = 2. O

For r = 3 and f = 2, there are three even multipartitions of 2. They are

M=(]1.0.0), =0T 10 andrs= (0,0, T ]).

|2® + 227 + x| = \/(903 +&%222 4 &) (23 4 §22% + o)
= zz—-1DvVat+zx+1

hy, = [¢°+&® + &)= \/ (23 + &2 + €2x) (a3 + €22 + €21)
= —x(x—l)\/m

hy, = |:c3+:c2+:c|:\/(:c3+:v2+:v)(:v3+:v2+x)
= (173—1-172—1-:17)

ha,

which is same as in example 6.1.
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