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ABSTRACT. In this manuscript, we handle a tubular surface whose Gauss map G satisfies
the equality L1G = f(G + C) for the Cheng-Yau operator L, in Galilean 3-space Gz. We
give an example of a tubular surface having L;-harmonic Gauss map. Moreover, we obtain
a complete classification of tubular surface having L;-pointwise 1-type Gauss map of the
first kind in Gz and we give some visualizations of this type surface.

1. Introduction

Finite type immersions are first given by Chen [6]. Let M be a submanifold
in m-dimensional Euclidean space E™. An isometric immersion = : M — E™ is of
finite type if it can be written as a finite sum of eigenvectors of the Laplacian A of
M for a constant map xg, and non-constant maps x1, o, ..., T, i.€.,

k
T =9+ E T;.
i=1

Here, Az = \jz;, \; € R, 1 <14 < k. The submanifold is said to be of k—type if the
numbers \;s are different [6].
Chen and Piccinni generalised these immersions to the Gauss map G of M

AG = a(G + C)

for a constant vector C and a real number a in [7]. A submanifold that satisfies the
last equality are said to have a 1-type Gauss map.
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In the last equality, one can take a non-constant differentiable function f instead
of a. Namely, one can generalise the last equality to

(1.1) AG = f(G +C).

A submanifold that satisfies the equation (1.1) is said to have a pointwise 1-type
Gauss map. Also, if the vector C is zero, the pointwise 1-type Gauss map is said to
be of the first kind. Otherwise, it is of the second kind. If AG = 0, the Gauss map
is harmonic. Surfaces satisfying the equation (1.1) are the subject of many studies
such as [3, 4, 13].

In [2, 10], the notion of finite type submanifolds is generalised by replacing the
Laplacian operator with operators Ly (k = 1,2,...,n — 1) that represent the linear
operators of the first variation of the (k 4 1)-th mean curvature of a submanifold.
Here, Ly = —A and L is the Cheng-Yau operator. Recently, some papers have been
published about surfaces having Li-pointwise 1-type Gauss map in some spaces,
such as [11, 12, 18].

Tubular surfaces are special cases of canal surfaces which are the envelopes of a
family of spheres. In canal surfaces, the center of the spheres are on a given space
curve (spine curve), and the radius of the spheres are different. In tubular surfaces,
the radius functions are constant. These surfaces have been widely studied in recent
times [5, 13, 14, 15, 16]. In Galilean 3-space, tubular surfaces are studied in [9].

2. Basic Concepts

Here, some preliminaries about Galilean geometry are given. For more detailed
information, the studies [19, 20] can be examined.

The scalar product and the cross product of the two vectors a = (a1, a2, a3) and
b= (b1, b2,b3) in G3 are defined as

(a,b) = a1by, if a1#0 or b #0
T asbe +asbs if a; =0 and by =0,

and
0 €z eg
axb=|a a a3z |,
by by b3

respectively. Here, e2=(0,1,0) and e3=(0,0,1) are the orthonormal unit vectors.
The length (norm) of the vector a = (ay,as,as3) is given as follows:

HaH: |a’1|a Zf 017&0
\/ag—&—a%, if ap =0

17].
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An admissible unit speed curve a : I C R — Gg is given with the parametriza-
tion

a(u) = (u,y(u), 2(u).

The associated Frenet frame on the curve is given as

n(u) — ﬁ(O,y”(u),z”(u)),
bu) = ﬁ(o,—z”w),y“(u)),

where r(u) = \/(y”(u))2 + (2"(u))? and T(u) = detlo’ (e (W) o6 the cur-

K2 (u
vature and the torsion of the curve, respectively. Thus, the famous Frenet formulas
can be written as

KN,
n = 7b,
b = —mn.

Definition 2.1. ([1]) A regular curve in Galilean space Gz with constant curvature
and non-constant torsion is called a Salkowski curve.

For an isometric immersion X : M — M from a hypersurface M from an (n+1)-
dimensional Riemannian manifold M, and for the Levi-Civita connections V of M
and V of M, the Gauss formula is given by

VxY = VxY + (S(X),Y),

where X,Y € x(M) and S is the shape operator of M. It is known that the
eigenvalues ki, Ka,...,k, of S are the principal curvatures of M. For a smooth
function f on M, linear operators Lj are defined

(21) Li(f) = div(Pe(V f)),
where V is the gradient, div is the divergence operator and

k
Pk = Z(—l)isk,iSi
=0

is the Newton k-th transformation, s; = Hj, is the k-th mean curvature [8].

n
k
Thus, for k = 0, Py = I, (I,, is the identity matrix), and for k = 1, Py = tr(S)I,,—S.
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Now, let M be a surface, ej,es be the principal directions correspond to the
curvatures ki, ko of M. From (2.1), for a smooth function f the Cheng-Yau operator
L1 f can be given as

Lif div(P1(V f))

erlka]er f + ealkileaf + ko (e1e1 — Ve,e2) f + ki (e2ea — Ve, e1) f.

Hence, the Cheng-Yau operator L; can be given
Ly = el[kg}%el + 62[k’1]%62 + ko (661661 — %vwez) + k1 (%62662 — %vqel)

[11].
Let the surface M parametrized with

X(uy,uz) = (v(ur,uz), y(u1, uz), z(u1, uz))
in G3. To represent the partial derivatives, we use

ox 9%z

= and T,j= 7——F—
8”2' " 8u18uj ’

T, 1§’L,j§2

If 2,;# 0 for some ¢ = 1,2, then the surface is admissible (i.e. having not any
Euclidean tangent planes). The first fundamental form I of the surface M is defined
as

I = (g1du, + g2du,)* + e(hirdl, + 2hiody, du, + hoodl),

where g; = 2,4, hij = y,sy,; +2, 2,5, 4, = 1,2 and

o 0, i¢f du, 1du, 1S mnon —isotropic,
] 1, if dy, :dy, is isotropic.

Let a function W is given by

(2.2) W = \/(%1 %2 =2 Z,1)2 + (@21~ 972)2~

Then, the unit normal vector field is given as

1
(23) G: W(O, —T,1 2,2 —|—I,2 2519251 Y,2 —T52Y,1 )

Similarly, the second fundamental form I7 of the surface M is defined as
IT = Ly1d}, 4 2L12dy, du, + Loody
where

1
Li; = 0 (910,95, 235 ) — 95,5 (0,91, 2,1 ), N), g1 #0
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or

1
Li; = . (92(0, Y555 215 ) — 9i,(0, 9,2, 2,2 ), N) g2 # 0.

The Gaussian and the mean curvatures of M are defined as

Lule =Ll gy 800 = 201020+ gile
w2 2W?2

(2.4) K=

A surface is flat (resp. minimal) if its Gaussian (resp. mean) curvatures vanish [19].

Lemma 2.2. ([11]) Let M be an oriented surface in E* and K and H be the
Gaussian and the mean curvatures of M, respectively. Then the Gauss map G of
M satisfies

(2.5) LG = -VK — 2HKG.

Definition 2.3. ([11]) Let M be an oriented surface in E2. Then, M is said to
have an Li-harmonic Gauss map if its Gauss map satisfies L1G = 0.

Definition 2.4. ([11]) Let M be an oriented surface in E3. Then, M is said to
have an Li-pointwise 1-type Gauss map if its Gauss map satisfies

(2.6) LG =f(G+C)

for a smooth function f and a constant vector C. If the vector C is zero, the
pointwise Li-type Gauss map is of the first kind, otherwise, it is of the second kind.

3. Tubular Surface with L; Pointwise 1-Type Gauss Map in Gg

A tubular surface M in Gz at a distance r from the points of spine curve
a(u) = (u,y(u), z(u)) is given with

(3.1) M : X (u,v) = a(u) + r(cosvn + sin vb).

Writing the Frenet vectors of o(u) in (3.1), the parametrization can be given as
(3.2)

M : X (u,v) = (u,y(u), z2(u)) + 2 [cosv(0,y" (u), 2" (u)) + sinv(0, —2" (u),y" (u))] .
From (3.2),
(3.3) g1=un=1 ga=u=0.

An orthonormal frame {ej, ea, G} of M is given by

X, .
(3.4) e = e =t —r7sinvn +rrcosvh, || X,|| =1
X
ey = —sinvn 4 cosvb, || X,|| =7

71} =
X
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and

(3.5) G = —cosvn — sin vb.

Here W = r. The coefficients of the second fundamental form are obtained as
(3.6) L1y = —kcosv 4 r72, Ly =T, Los =1.

From, (3.3) and (3.6), the curvature functions of M are obtained as

—K COSV 1
3.7 K= —">"" H=—
(3.7) ro 2r
[9].
Corollary 3.5. ([9]) Tubular surfaces are constant mean curvature surfaces in
Galilean space.

By (3.7), we write the gradient of the Gaussian curvature

—K' cosv Ksinv

(38) VK = e + €9.
T T

Thus, from (3.4), (3.7) and (3.8), we obtain the Cheng-Yau operator of the
Gauss map as

1 —k'r cosvt
(3.9) LiG=—-— + (k'Tr? cosvsinv — krsin® v + k cos? v) n
r ; ;
+ (—K‘/T’I‘Q cos? v + krsin v cosv + K cos v sin v) b.

Now, we consider the surface M has Li-harmonic Gauss map, i.e. L1G = 0. Then,
from (3.9), we have

Kk'rcosv =0

and

|
o

(3.10) K'7r? cosvsinv — krsin® v + K cos® v

—k'Tr2 cos® v + krsinvcosv + kcosvsine = 0.
Writing x'r cosv = 0 in (3.10), we get
.2 2 _
—Kkrsin“v+ kcos“v = 0,
Krsinvcosv + kcosvsiny = 0.

Multiplying the first equation with cosv and the second with sinv, we obtain
kcosv = 0, which implies kK = 0 or cosv = 0. If cosv = 0, again from (3.10),
Kk =0.

Then, we give the following theorem:
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Theorem 3.6. Let M be a tubular surface given with the parametrization (3.1) in
Gs. M has Li-harmonic Gauss map if and only if the spine curve « is a straight
line and M is an open part of a cylinder. Thus, the surface is flat.

Example 3.7. Let us consider the tubular surface M, which has L;-harmonic
Gauss map with the parametrization (3.1) in Gz. Taking the straight line a(u) =
(u,u+1,u + 2) and writing the Frenet vectors of it n(u) = (0, 1,0), b(u) = (0,0, 1)
and r =4 in (3.1), we write the parametrization of the surface M as

(3.11) M : X(u,v) = (u,u+1+4cosv,u+ 2+ 4sinv).

By using the software Maple, we plot the graph of the surface in (3.11).

Figure 1: Tubular surfaces M which has Lj-harmonic Gauss map with the
spine curve a(u) = (u,u + 1,u + 2) and the radius r = 4.

Now, we assume that the tubular surface M has L;-pointwise 1-type Gauss map
of the first kind, i.e., L1G = fG for a smooth function f. Then, from (3.5) and
(3.9),

1 —kK'r cos vt

+ (K/TTQ cosvsinv — krsin® v + K cos? v) n
+ (—H/TT2 cos? v + krsinvcos v + K cos v sin v) b.

(3.12) - 5

= —fcosvn — fsinwvb

From (3.12), we have

k' cosv =10
and
(3.13) K'1r? cosvsinv — krsin®v + kcos*v = frcosv,
—k/'Tr? cos? v + krsinvcosv + kcosvsiny = fr¥sinwv.

Similar to above, writing &’ cosv = 0 in (3.13), we get

(3.14) —krsin®v + kcos*v = fricosv,

krsinvcosv + keosvsinw =  frisinv.



174 L. Kisi and G. Oztiirk

Multiplying the first equation with cos v, the second with sin v, and combining them,
we obtain f = 2%  Moreover, since k' cosv = 0, we have two cases: k = 0 or &
is a constant. If k = 0, the tubular surface M has L;-harmonic Gauss map. Thus,
K is a nonzero constant.

Theorem 3.8. Let M be a tubular surface given with the parametrization (3.1)
in Gs. M has Ly-pointwise 1-type Gauss map of the first kind if and only if the
K

curvature k of the curve is constant and f = —<-.

Corollary 3.9. The spine curve of the surface which has Ly -pointwise 1-type Gauss
map of the first kind is a Salkowski curve in Gg.

Example 3.10. Let us consider the tubular surface M, which has Li-pointwise
1-type Gauss map of the first kind with the parametrization (3.1) in Gs. For the

curves ag(u) = (u,cosu,sinu), as(u) = (u, %,O)7 and the radius r = 2, we write
the parametrizations of the surfaces M; and M> as

(3.15) M; : X(u,v) = (u,cosu—2cos(u+v),sinu— 2sin (u+v)),

2
My : X(u,v)= (u,u2 —|—2cosv,2sinv> .

We again use Maple to plot the graphs of the surfaces in (3.15).

Figure 2: Tubular surfaces My and My which have Li-harmonic Gauss map
2

with the spine curves ai(u) = (u,cosu,sinu), as(u) = (u, % ,0) and the

radius r = 2.

Lastly, we consider that the tubular surface M has Li-pointwise 1-type Gauss
map of the second kind, i.e., L;G = f(G+ C) for a smooth function f and a
nonzero constant vector C. From the equations (2.6) and (3.9), we can write the

vector C' as 1
C = 2 (—k'r cosvt + A(u,v)n + B(u,v)b),
T
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where

2

A(u,v) = K'mricosvsinv — krsin®v + kcos? v — fr? cosv,

2

B(u,v) = —k'1r?cos?v+ krsinvcosv + kcosvsinv — fr2sinw.
?

Since C' is a nonzero constant vector, %EIC =0 and 6620 = 0. Thus, we have

- /
0=%.C = [/@ cosv}t

fr
—A(u,v)]  7B(u,v) kK cosv
(3.16) + <61 [ e + 12 + r n
—B(u,v)] TA(u,v)
+ (o [T -5
and
= B K’ cosv [—A(u,v) —B(u,v)
(3.17) O—VeQC—eg[ Fr ]t+62 Fr2 ]n-l—ez[ Fr2 b
Since
. k' cosv _. k' cosv _0
1 f’/‘ — €2 f?" — Y
we get
K:H — h:/fu,
—fsinv = f,cosv.

From the last differential equation system,
(3.18) f =ar'cosw,

where a is a real constant. By the equation (3.17),

which means
(3.19) A(u,v) = fhi(u), B(u,v) = fha(u).
Here hq(u) and ho(u) are any functions of u. Moreover, from (3.16),

—B(u, A(u,
{ f(;v)}j;:ﬁzo'

Writing (3.19) in the last equation, we obtain

e1 [—ha(u)] — 7hy(u) =0,
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which has a solution as

(3.20) ho(u) = f/Thl(u)du.

From (3.16), we have

_ !
o [ A(u,v)] 7B(u,v) 4 fslcosy

re T
Again writing (3.19) in the last equation, we obtain

eﬂfMWH+TMQQ+%;:Q

which has a solution as
KT
(3.21) imm_/ﬁm@+5)m

Then, we give the following theorem:

Theorem 3.11. Let M be a tubular surface given with the parametrization (3.1)
i Gz. M has Li-pointwise 1-type Gauss map of the second kind if and only if
f = ar’cosv for a real constant a and the equations (3.19)-(3.21) are hold.
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