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Abstract. In this manuscript, we handle a tubular surface whose Gauss map G satisfies

the equality L1G = f(G+ C) for the Cheng-Yau operator L1 in Galilean 3-space G3. We

give an example of a tubular surface having L1-harmonic Gauss map. Moreover, we obtain

a complete classification of tubular surface having L1-pointwise 1-type Gauss map of the

first kind in G3 and we give some visualizations of this type surface.

1. Introduction

Finite type immersions are first given by Chen [6]. Let M be a submanifold
in m-dimensional Euclidean space Em. An isometric immersion x : M → Em is of
finite type if it can be written as a finite sum of eigenvectors of the Laplacian ∆ of
M for a constant map x0, and non-constant maps x1, x2, ..., xk, i.e.,

x = x0 +

k∑
i=1

xi.

Here, ∆x = λixi, λi ∈ R, 1 ≤ i ≤ k. The submanifold is said to be of k−type if the
numbers λis are different [6].

Chen and Piccinni generalised these immersions to the Gauss map G of M

∆G = a(G+ C)

for a constant vector C and a real number a in [7]. A submanifold that satisfies the
last equality are said to have a 1-type Gauss map.
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In the last equality, one can take a non-constant differentiable function f instead
of a. Namely, one can generalise the last equality to

(1.1) ∆G = f(G+ C).

A submanifold that satisfies the equation (1.1) is said to have a pointwise 1-type
Gauss map. Also, if the vector C is zero, the pointwise 1-type Gauss map is said to
be of the first kind. Otherwise, it is of the second kind. If ∆G = 0, the Gauss map
is harmonic. Surfaces satisfying the equation (1.1) are the subject of many studies
such as [3, 4, 13].

In [2, 10], the notion of finite type submanifolds is generalised by replacing the
Laplacian operator with operators Lk (k = 1, 2, ..., n− 1) that represent the linear
operators of the first variation of the (k + 1)-th mean curvature of a submanifold.
Here, L0 = −∆ and L1 is the Cheng-Yau operator. Recently, some papers have been
published about surfaces having L1-pointwise 1-type Gauss map in some spaces,
such as [11, 12, 18].

Tubular surfaces are special cases of canal surfaces which are the envelopes of a
family of spheres. In canal surfaces, the center of the spheres are on a given space
curve (spine curve), and the radius of the spheres are different. In tubular surfaces,
the radius functions are constant. These surfaces have been widely studied in recent
times [5, 13, 14, 15, 16]. In Galilean 3-space, tubular surfaces are studied in [9].

2. Basic Concepts

Here, some preliminaries about Galilean geometry are given. For more detailed
information, the studies [19, 20] can be examined.

The scalar product and the cross product of the two vectors a = (a1, a2, a3) and
b = (b1, b2, b3) in G3 are defined as

⟨a, b⟩ =
{

a1b1, if a1 ̸= 0 or b1 ̸= 0
a2b2 + a3b3 if a1 = 0 and b1 = 0,

and

a× b =

∣∣∣∣∣∣
0 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ ,
respectively. Here, e2=(0, 1, 0) and e3=(0, 0, 1) are the orthonormal unit vectors.
The length (norm) of the vector a = (a1, a2, a3) is given as follows:

∥a∥ =

{
|a1| , if a1 ̸= 0√
a22 + a23, if a1 = 0

[17].
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An admissible unit speed curve α : I ⊂ R → G3 is given with the parametriza-
tion

α(u) = (u, y(u), z(u)).

The associated Frenet frame on the curve is given as

t(u) = (1, y′(u), z′(u)),

n(u) =
1

κ(u)
(0, y′′(u), z′′(u)),

b(u) =
1

κ(u)
(0,−z′′(u), y′′(u)),

where κ(u) =

√
(y′′(u))

2
+ (z′′(u))

2
and τ(u) =

det(α′(u),α′′(u),α′′′(u))
κ2(u) are the cur-

vature and the torsion of the curve, respectively. Thus, the famous Frenet formulas
can be written as

t′ = κn,

n′ = τb,

b′ = −τn.

Definition 2.1. ([1]) A regular curve in Galilean space G3 with constant curvature
and non-constant torsion is called a Salkowski curve.

For an isometric immersionX : M → M̃ from a hypersurfaceM from an (n+1)-

dimensional Riemannian manifold M̃ , and for the Levi-Civita connections ∇̃ of M̃
and ∇ of M , the Gauss formula is given by

∇̃XY = ∇XY + ⟨S(X), Y ⟩ ,

where X,Y ∈ χ(M) and S is the shape operator of M . It is known that the
eigenvalues κ1, κ2, ..., κn of S are the principal curvatures of M . For a smooth
function f on M , linear operators Lk are defined

(2.1) Lk(f) = div(Pk(∇f)),

where ∇ is the gradient, div is the divergence operator and

Pk =

k∑
i=0

(−1)isk−iS
i

is the Newton k-th transformation, sk =

(
n
k

)
Hk is the k-th mean curvature [8].

Thus, for k = 0, P0 = In (In is the identity matrix), and for k = 1, P1 = tr(S)In−S.
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Now, let M be a surface, e1, e2 be the principal directions correspond to the
curvatures k1, k2 ofM . From (2.1), for a smooth function f the Cheng-Yau operator
L1f can be given as

L1f = div(P1(∇f))

= e1[k2]e1f + e2[k1]e2f + k2 (e1e1 −∇e2e2) f + k1 (e2e2 −∇e1e1) f.

Hence, the Cheng-Yau operator L1 can be given

L1 = e1[k2]∇̃e1 + e2[k1]∇̃e2 + k2

(
∇̃e1∇̃e1 − ∇̃∇e2e2

)
+ k1

(
∇̃e2∇̃e2 − ∇̃∇e1e1

)
[11].

Let the surface M parametrized with

X(u1, u2) = (x(u1, u2), y(u1, u2), z(u1, u2))

in G3. To represent the partial derivatives, we use

x,i =
∂x

∂ui
and x,ij =

∂2x

∂ui∂uj
, 1 ≤ i, j ≤ 2.

If x,i ̸= 0 for some i = 1, 2, then the surface is admissible (i.e. having not any
Euclidean tangent planes). The first fundamental form I of the surface M is defined
as

I = (g1du1
+ g2du2

)2 + ε(h11d
2
u1

+ 2h12du1
du2

+ h22d
2
u2
),

where gi = x,i, hij = y,i y,j +z,i z,j ; i, j = 1, 2 and

ε =

{
0, if du1

: du2
is non− isotropic,

1, if du1
: du2

is isotropic.

Let a function W is given by

(2.2) W =

√
(x,1 z,2 −x,2 z,1 )

2
+ (x,2 y,1 −x,1 y,2 )

2
.

Then, the unit normal vector field is given as

(2.3) G =
1

W
(0,−x,1 z,2 +x,2 z,1 , x,1 y,2 −x,2 y,1 ).

Similarly, the second fundamental form II of the surface M is defined as

II = L11d
2
u1

+ 2L12du1du2 + L22d
2
u2
,

where

Lij =
1

g1
⟨g1(0, y,ij , z,ij )− gi,j(0, y,1 , z,1 ), N⟩ , g1 ̸= 0
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or

Lij =
1

g2
⟨g2(0, y,ij , z,ij )− gi,j(0, y,2 , z,2 ), N⟩ , g2 ̸= 0.

The Gaussian and the mean curvatures of M are defined as

(2.4) K =
L11L22 − L2

12

W 2
and H =

g22L11 − 2g1g2L12 + g21L22

2W 2
.

A surface is flat (resp. minimal) if its Gaussian (resp. mean) curvatures vanish [19].

Lemma 2.2. ([11]) Let M be an oriented surface in E3 and K and H be the
Gaussian and the mean curvatures of M , respectively. Then the Gauss map G of
M satisfies

(2.5) L1G = −∇K − 2HKG.

Definition 2.3. ([11]) Let M be an oriented surface in E3. Then, M is said to
have an L1-harmonic Gauss map if its Gauss map satisfies L1G = 0.

Definition 2.4. ([11]) Let M be an oriented surface in E3. Then, M is said to
have an L1-pointwise 1-type Gauss map if its Gauss map satisfies

(2.6) L1G = f (G+ C)

for a smooth function f and a constant vector C. If the vector C is zero, the
pointwise L1-type Gauss map is of the first kind, otherwise, it is of the second kind.

3. Tubular Surface with L1 Pointwise 1-Type Gauss Map in G3

A tubular surface M in G3 at a distance r from the points of spine curve
α(u) = (u, y(u), z(u)) is given with

(3.1) M : X(u, v) = α(u) + r(cos vn+ sin vb).

Writing the Frenet vectors of α(u) in (3.1), the parametrization can be given as
(3.2)

M : X(u, v) = (u, y(u), z(u)) +
r

κ
[cos v(0, y′′(u), z′′(u)) + sin v(0,−z′′(u), y′′(u))] .

From (3.2),

(3.3) g1 = u,1 = 1, g2 = u,2 = 0.

An orthonormal frame {e1, e2, G} of M is given by

e1 =
Xu

∥Xu∥
= t− rτ sin vn+ rτ cos vb, ∥Xu∥ = 1(3.4)

e2 =
Xv

∥Xv∥
= − sin vn+ cos vb, ∥Xv∥ = r
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and

(3.5) G = − cos vn− sin vb.

Here W = r. The coefficients of the second fundamental form are obtained as

(3.6) L11 = −κ cos v + rτ2, L12 = rτ, L22 = r.

From, (3.3) and (3.6), the curvature functions of M are obtained as

(3.7) K =
−κ cos v

r
, H =

1

2r

[9].

Corollary 3.5. ([9]) Tubular surfaces are constant mean curvature surfaces in
Galilean space.

By (3.7), we write the gradient of the Gaussian curvature

(3.8) ∇K =
−κ′ cos v

r
e1 +

κ sin v

r
e2.

Thus, from (3.4), (3.7) and (3.8), we obtain the Cheng-Yau operator of the
Gauss map as

(3.9) L1G = − 1

r2


−κ′r cos vt

+
(
κ′τr2 cos v sin v − κr sin2 v + κ cos2 v

)
n

+
(
−κ′τr2 cos2 v + κr sin v cos v + κ cos v sin v

)
b.

Now, we consider the surface M has L1-harmonic Gauss map, i.e. L1G = 0. Then,
from (3.9), we have

κ′r cos v = 0

and

κ′τr2 cos v sin v − κr sin2 v + κ cos2 v = 0,(3.10)

−κ′τr2 cos2 v + κr sin v cos v + κ cos v sin v = 0.

Writing κ′r cos v = 0 in (3.10), we get

−κr sin2 v + κ cos2 v = 0,

κr sin v cos v + κ cos v sin v = 0.

Multiplying the first equation with cosv and the second with sinv, we obtain
κ cos v = 0, which implies κ = 0 or cosv = 0. If cosv = 0, again from (3.10),
κ = 0.

Then, we give the following theorem:
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Theorem 3.6. Let M be a tubular surface given with the parametrization (3.1) in
G3. M has L1-harmonic Gauss map if and only if the spine curve α is a straight
line and M is an open part of a cylinder. Thus, the surface is flat.

Example 3.7. Let us consider the tubular surface M , which has L1-harmonic
Gauss map with the parametrization (3.1) in G3. Taking the straight line α(u) =
(u, u+ 1, u+ 2) and writing the Frenet vectors of it n(u) = (0, 1, 0), b(u) = (0, 0, 1)
and r = 4 in (3.1), we write the parametrization of the surface M as

(3.11) M : X(u, v) = (u, u+ 1 + 4 cos v, u+ 2 + 4 sin v).

By using the software Maple, we plot the graph of the surface in (3.11).

Figure 1: Tubular surfaces M which has L1-harmonic Gauss map with the
spine curve α(u) = (u, u+ 1, u+ 2) and the radius r = 4.

Now, we assume that the tubular surface M has L1-pointwise 1-type Gauss map
of the first kind, i.e., L1G = fG for a smooth function f . Then, from (3.5) and
(3.9),

− 1

r2


−κ′r cos vt

+
(
κ′τr2 cos v sin v − κr sin2 v + κ cos2 v

)
n

+
(
−κ′τr2 cos2 v + κr sin v cos v + κ cos v sin v

)
b.

(3.12)

= −f cos vn− f sin vb

From (3.12), we have

κ′ cos v = 0

and

κ′τr2 cos v sin v − κr sin2 v + κ cos2 v = fr2 cos v,(3.13)

−κ′τr2 cos2 v + κr sin v cos v + κ cos v sin v = fr2 sin v.

Similar to above, writing κ′ cos v = 0 in (3.13), we get

−κr sin2 v + κ cos2 v = fr2 cos v,(3.14)

κr sin v cos v + κ cos v sin v = fr2 sin v.
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Multiplying the first equation with cos v, the second with sin v, and combining them,
we obtain f = κ cos v

r2 . Moreover, since κ′ cos v = 0, we have two cases: κ = 0 or κ
is a constant. If κ = 0, the tubular surface M has L1-harmonic Gauss map. Thus,
κ is a nonzero constant.

Theorem 3.8. Let M be a tubular surface given with the parametrization (3.1)
in G3. M has L1-pointwise 1-type Gauss map of the first kind if and only if the
curvature κ of the curve is constant and f = −K

r .

Corollary 3.9. The spine curve of the surface which has L1-pointwise 1-type Gauss
map of the first kind is a Salkowski curve in G3.

Example 3.10. Let us consider the tubular surface M , which has L1-pointwise
1-type Gauss map of the first kind with the parametrization (3.1) in G3. For the

curves α1(u) = (u, cosu, sinu), α2(u) = (u, u2

2 , 0), and the radius r = 2, we write
the parametrizations of the surfaces M1 and M2 as

M1 : X(u, v) = (u, cosu− 2 cos (u+ v) , sinu− 2 sin (u+ v)) ,(3.15)

M2 : X(u, v) =

(
u,

u2

2
+ 2 cos v, 2 sin v

)
.

We again use Maple to plot the graphs of the surfaces in (3.15).

Figure 2: Tubular surfaces M1 and M2 which have L1-harmonic Gauss map
with the spine curves α1(u) = (u, cosu, sinu), α2(u) = (u, u

2

2 , 0) and the
radius r = 2.

Lastly, we consider that the tubular surface M has L1-pointwise 1-type Gauss
map of the second kind, i.e., L1G = f (G+ C) for a smooth function f and a
nonzero constant vector C. From the equations (2.6) and (3.9), we can write the
vector C as

C = − 1

fr2
(−κ′r cos vt+A(u, v)n+B(u, v)b) ,
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where

A(u, v) = κ′τr2 cos v sin v − κr sin2 v + κ cos2 v − fr2 cos v,

B(u, v) = −κ′τr2 cos2 v + κr sin v cos v + κ cos v sin v − fr2 sin v.

Since C is a nonzero constant vector, ∇̃e1C = 0 and ∇̃e2C = 0. Thus, we have

0 = ∇̃e1C = e1

[
κ′ cos v

fr

]
t

+

(
e1

[
−A(u, v)

fr2

]
+

τB(u, v)

fr2
+

κκ′ cos v

fr

)
n(3.16)

+

(
e1

[
−B(u, v)

fr2

]
− τA(u, v)

fr2

)
b,

and

(3.17) 0 = ∇̃e2C = e2

[
κ′ cos v

fr

]
t+ e2

[
−A(u, v)

fr2

]
n+ e2

[
−B(u, v)

fr2

]
b.

Since

e1

[
κ′ cos v

fr

]
= e2

[
κ′ cos v

fr

]
= 0,

we get

κ′′f = κ′fu,

−f sin v = fv cos v.

From the last differential equation system,

(3.18) f = aκ′ cos v,

where a is a real constant. By the equation (3.17),

e2

[
−A(u, v)

fr2

]
= e2

[
−B(u, v)

fr2

]
= 0

which means

(3.19) A(u, v) = fh1(u), B(u, v) = fh2(u).

Here h1(u) and h2(u) are any functions of u. Moreover, from (3.16),

e1

[
−B(u, v)

fr2

]
− τA(u, v)

fr2
= 0.

Writing (3.19) in the last equation, we obtain

e1 [−h2(u)]− τh1(u) = 0,
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which has a solution as

(3.20) h2(u) = −
∫

τh1(u)du.

From (3.16), we have

e1

[
−A(u, v)

fr2

]
+

τB(u, v)

fr2
+

κκ′ cos v

fr
= 0.

Again writing (3.19) in the last equation, we obtain

e1 [−h1(u)] + τh2(u) +
κr

a
= 0,

which has a solution as

(3.21) h1(u) =

∫ (
τh2(u) +

κr

a

)
du.

Then, we give the following theorem:

Theorem 3.11. Let M be a tubular surface given with the parametrization (3.1)
in G3. M has L1-pointwise 1-type Gauss map of the second kind if and only if
f = aκ′ cos v for a real constant a and the equations (3.19)-(3.21) are hold.
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