KYUNGPOOK Math. J. 62(2022), 167-177
https://doi.org/10.5666/KMJ.2022.62.1.167
pISSN 1225-6951 eISSN 0454-8124
(C) Kyungpook Mathematical Journal

Classifications of Tubular Surface with L_{1}-Pointwise 1-Type Gauss Map in Galilean 3 -space \mathbb{G}_{3}

İlim Kişı*
Department of Mathematics, Kocaeli University, Kocaeli 41380, Turkey
e-mail: ilim.ayvaz@kocaeli.edu.tr
GÜnAy Öztürk
Department of Mathematics, İzmir Democracy University, İzmir 35140, Turkey
e-mail: gunay.ozturk@idu.edu.tr

Abstract. In this manuscript, we handle a tubular surface whose Gauss map G satisfies the equality $L_{1} G=f(G+C)$ for the Cheng-Yau operator L_{1} in Galilean 3-space \mathbb{G}_{3}. We give an example of a tubular surface having L_{1}-harmonic Gauss map. Moreover, we obtain a complete classification of tubular surface having L_{1}-pointwise 1-type Gauss map of the first kind in \mathbb{G}_{3} and we give some visualizations of this type surface.

1. Introduction

Finite type immersions are first given by Chen [6]. Let M be a submanifold in m-dimensional Euclidean space \mathbb{E}^{m}. An isometric immersion $x: M \rightarrow \mathbb{E}^{m}$ is of finite type if it can be written as a finite sum of eigenvectors of the Laplacian Δ of M for a constant map x_{0}, and non-constant maps $x_{1}, x_{2}, \ldots, x_{k}$, i.e.,

$$
x=x_{0}+\sum_{i=1}^{k} x_{i} .
$$

Here, $\Delta x=\lambda_{i} x_{i}, \lambda_{i} \in \mathbb{R}, 1 \leq i \leq k$. The submanifold is said to be of k-type if the numbers λ_{i} s are different [6].

Chen and Piccinni generalised these immersions to the Gauss map G of M

$$
\Delta G=a(G+C)
$$

for a constant vector C and a real number a in [7]. A submanifold that satisfies the last equality are said to have a 1-type Gauss map.

* Corresponding Author.

Received December 26, 2020; accepted March 23, 2021.
2020 Mathematics Subject Classification: 53A35, 53B30.
Key words and phrases: Cheng-Yau operator, Gauss map, tubular surface, Galilean 3space.

In the last equality, one can take a non-constant differentiable function f instead of a. Namely, one can generalise the last equality to

$$
\begin{equation*}
\Delta G=f(G+C) \tag{1.1}
\end{equation*}
$$

A submanifold that satisfies the equation (1.1) is said to have a pointwise 1-type Gauss map. Also, if the vector C is zero, the pointwise 1-type Gauss map is said to be of the first kind. Otherwise, it is of the second kind. If $\Delta G=0$, the Gauss map is harmonic. Surfaces satisfying the equation (1.1) are the subject of many studies such as $[3,4,13]$.

In $[2,10]$, the notion of finite type submanifolds is generalised by replacing the Laplacian operator with operators $L_{k}(k=1,2, \ldots, n-1)$ that represent the linear operators of the first variation of the $(k+1)$-th mean curvature of a submanifold. Here, $L_{0}=-\Delta$ and L_{1} is the Cheng-Yau operator. Recently, some papers have been published about surfaces having L_{1}-pointwise 1-type Gauss map in some spaces, such as $[11,12,18]$.

Tubular surfaces are special cases of canal surfaces which are the envelopes of a family of spheres. In canal surfaces, the center of the spheres are on a given space curve (spine curve), and the radius of the spheres are different. In tubular surfaces, the radius functions are constant. These surfaces have been widely studied in recent times $[5,13,14,15,16]$. In Galilean 3 -space, tubular surfaces are studied in [9].

2. Basic Concepts

Here, some preliminaries about Galilean geometry are given. For more detailed information, the studies $[19,20]$ can be examined.

The scalar product and the cross product of the two vectors $a=\left(a_{1}, a_{2}, a_{3}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}\right)$ in \mathbb{G}_{3} are defined as

$$
\langle a, b\rangle=\left\{\begin{array}{cccc}
a_{1} b_{1}, & \text { if } a_{1} \neq 0 & \text { or } & b_{1} \neq 0 \\
a_{2} b_{2}+a_{3} b_{3} & \text { if } a_{1}=0 & \text { and } & b_{1}=0
\end{array}\right.
$$

and

$$
a \times b=\left|\begin{array}{ccc}
0 & \mathbf{e}_{\mathbf{2}} & \mathbf{e}_{\mathbf{3}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|,
$$

respectively. Here, $\mathbf{e}_{\mathbf{2}}=(0,1,0)$ and $\mathbf{e}_{\mathbf{3}}=(0,0,1)$ are the orthonormal unit vectors. The length (norm) of the vector $a=\left(a_{1}, a_{2}, a_{3}\right)$ is given as follows:

$$
\|a\|=\left\{\begin{array}{cc}
\left|a_{1}\right|, & \text { if } a_{1} \neq 0 \\
\sqrt{a_{2}^{2}+a_{3}^{2}}, & \text { if } a_{1}=0
\end{array}\right.
$$

[17].

An admissible unit speed curve $\alpha: I \subset \mathbb{R} \rightarrow \mathbb{G}_{3}$ is given with the parametrization

$$
\alpha(u)=(u, y(u), z(u)) .
$$

The associated Frenet frame on the curve is given as

$$
\begin{aligned}
t(u) & =\left(1, y^{\prime}(u), z^{\prime}(u)\right), \\
n(u) & =\frac{1}{\kappa(u)}\left(0, y^{\prime \prime}(u), z^{\prime \prime}(u)\right), \\
b(u) & =\frac{1}{\kappa(u)}\left(0,-z^{\prime \prime}(u), y^{\prime \prime}(u)\right),
\end{aligned}
$$

where $\kappa(u)=\sqrt{\left(y^{\prime \prime}(u)\right)^{2}+\left(z^{\prime \prime}(u)\right)^{2}}$ and $\tau(u)=\frac{\operatorname{det}\left(\alpha^{\prime}(u), \alpha^{\prime \prime}(u), \alpha^{\prime \prime \prime}(u)\right)}{\kappa^{2}(u)}$ are the curvature and the torsion of the curve, respectively. Thus, the famous Frenet formulas can be written as

$$
\begin{aligned}
t^{\prime} & =\kappa n, \\
n^{\prime} & =\tau b, \\
b^{\prime} & =-\tau n .
\end{aligned}
$$

Definition 2.1. ([1]) A regular curve in Galilean space \mathbb{G}_{3} with constant curvature and non-constant torsion is called a Salkowski curve.

For an isometric immersion $X: M \rightarrow \widetilde{M}$ from a hypersurface M from an $(n+1)$ dimensional Riemannian manifold \widetilde{M}, and for the Levi-Civita connections $\widetilde{\nabla}$ of \widetilde{M} and ∇ of M, the Gauss formula is given by

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\langle S(X), Y\rangle,
$$

where $X, Y \in \chi(M)$ and S is the shape operator of M. It is known that the eigenvalues $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{n}$ of S are the principal curvatures of M. For a smooth function f on M, linear operators L_{k} are defined

$$
\begin{equation*}
L_{k}(f)=\operatorname{div}\left(P_{k}(\nabla f)\right), \tag{2.1}
\end{equation*}
$$

where ∇ is the gradient, $d i v$ is the divergence operator and

$$
P_{k}=\sum_{i=0}^{k}(-1)^{i} s_{k-i} S^{i}
$$

is the Newton k-th transformation, $s_{k}=\binom{n}{k} H_{k}$ is the k -th mean curvature [8]. Thus, for $k=0, P_{0}=I_{n}$ (I_{n} is the identity matrix), and for $k=1, P_{1}=\operatorname{tr}(S) I_{n}-S$.

Now, let M be a surface, e_{1}, e_{2} be the principal directions correspond to the curvatures k_{1}, k_{2} of M. From (2.1), for a smooth function f the Cheng-Yau operator $L_{1} f$ can be given as

$$
\begin{aligned}
L_{1} f & =\operatorname{div}\left(P_{1}(\nabla f)\right) \\
& =e_{1}\left[k_{2}\right] e_{1} f+e_{2}\left[k_{1}\right] e_{2} f+k_{2}\left(e_{1} e_{1}-\nabla_{e_{2}} e_{2}\right) f+k_{1}\left(e_{2} e_{2}-\nabla_{e_{1}} e_{1}\right) f
\end{aligned}
$$

Hence, the Cheng-Yau operator L_{1} can be given

$$
L_{1}=e_{1}\left[k_{2}\right] \widetilde{\nabla} e_{1}+e_{2}\left[k_{1}\right] \widetilde{\nabla} e_{2}+k_{2}\left(\widetilde{\nabla} e_{1} \widetilde{\nabla} e_{1}-\widetilde{\nabla}_{\nabla_{e_{2}} e_{2}}\right)+k_{1}\left(\widetilde{\nabla} e_{2} \widetilde{\nabla} e_{2}-\widetilde{\nabla}_{\nabla_{e_{1}} e_{1}}\right)
$$

[11].
Let the surface M parametrized with

$$
X\left(u_{1}, u_{2}\right)=\left(x\left(u_{1}, u_{2}\right), y\left(u_{1}, u_{2}\right), z\left(u_{1}, u_{2}\right)\right)
$$

in \mathbb{G}_{3}. To represent the partial derivatives, we use

$$
x, i=\frac{\partial x}{\partial u_{i}} \quad \text { and } \quad x, i j=\frac{\partial^{2} x}{\partial u_{i} \partial u_{j}}, \quad 1 \leq i, j \leq 2 .
$$

If $x_{i} \neq 0$ for some $i=1,2$, then the surface is admissible (i.e. having not any Euclidean tangent planes). The first fundamental form I of the surface M is defined as

$$
I=\left(g_{1} d_{u_{1}}+g_{2} d_{u_{2}}\right)^{2}+\varepsilon\left(h_{11} d_{u_{1}}^{2}+2 h_{12} d_{u_{1}} d_{u_{2}}+h_{22} d_{u_{2}}^{2}\right),
$$

where $g_{i}=x, i, h_{i j}=y, i y_{, j}+z,{ }_{, i} z, j ; i, j=1,2$ and

$$
\varepsilon=\left\{\begin{array}{lc}
0, & \text { if } d_{u_{1}}: d_{u_{2}} \\
1, & \text { if } d_{u_{1}}: d_{u_{2}} \text { is is isotropic. }
\end{array}\right.
$$

Let a function W is given by

$$
\begin{equation*}
W=\sqrt{(x, 1 z, 2-x, 2 z, 1)^{2}+\left(x, 2 y, 1-x, 1 y_{, 2}\right)^{2}} . \tag{2.2}
\end{equation*}
$$

Then, the unit normal vector field is given as

$$
\begin{equation*}
G=\frac{1}{W}\left(0,-x,,_{1} z, 2+x, 2,_{1}, x,{ }_{1} y, 2-x, 2 y_{, 1}\right) . \tag{2.3}
\end{equation*}
$$

Similarly, the second fundamental form $I I$ of the surface M is defined as

$$
I I=L_{11} d_{u_{1}}^{2}+2 L_{12} d_{u_{1}} d_{u_{2}}+L_{22} d_{u_{2}}^{2},
$$

where

$$
L_{i j}=\frac{1}{g_{1}}\left\langle g_{1}\left(0, y,,_{i j}, z,,_{i j}\right)-g_{i, j}(0, y, 1, z, 1), N\right\rangle, \quad g_{1} \neq 0
$$

or

$$
L_{i j}=\frac{1}{g_{2}}\left\langle g_{2}\left(0, y,,_{i j}, z, i_{i j}\right)-g_{i, j}(0, y, 2, z, 2), N\right\rangle, \quad g_{2} \neq 0 .
$$

The Gaussian and the mean curvatures of M are defined as

$$
\begin{equation*}
K=\frac{L_{11} L_{22}-L_{12}^{2}}{W^{2}} \quad \text { and } H=\frac{g_{2}^{2} L_{11}-2 g_{1} g_{2} L_{12}+g_{1}^{2} L_{22}}{2 W^{2}} . \tag{2.4}
\end{equation*}
$$

A surface is flat (resp. minimal) if its Gaussian (resp. mean) curvatures vanish [19].
Lemma 2.2. ([11]) Let M be an oriented surface in \mathbb{E}^{3} and K and H be the Gaussian and the mean curvatures of M, respectively. Then the Gauss map G of M satisfies

$$
\begin{equation*}
L_{1} G=-\nabla K-2 H K G . \tag{2.5}
\end{equation*}
$$

Definition 2.3. ([11]) Let M be an oriented surface in \mathbb{E}^{3}. Then, M is said to have an L_{1}-harmonic Gauss map if its Gauss map satisfies $L_{1} G=0$.

Definition 2.4. ([11]) Let M be an oriented surface in \mathbb{E}^{3}. Then, M is said to have an L_{1}-pointwise 1-type Gauss map if its Gauss map satisfies

$$
\begin{equation*}
L_{1} G=f(G+C) \tag{2.6}
\end{equation*}
$$

for a smooth function f and a constant vector C. If the vector C is zero, the pointwise L_{1}-type Gauss map is of the first kind, otherwise, it is of the second kind.

3. Tubular Surface with L_{1} Pointwise 1-Type Gauss Map in \mathbb{G}_{3}

A tubular surface M in \mathbb{G}_{3} at a distance r from the points of spine curve $\alpha(u)=(u, y(u), z(u))$ is given with

$$
\begin{equation*}
M: X(u, v)=\alpha(u)+r(\cos v n+\sin v b) . \tag{3.1}
\end{equation*}
$$

Writing the Frenet vectors of $\alpha(u)$ in (3.1), the parametrization can be given as

$$
\begin{equation*}
M: X(u, v)=(u, y(u), z(u))+\frac{r}{\kappa}\left[\cos v\left(0, y^{\prime \prime}(u), z^{\prime \prime}(u)\right)+\sin v\left(0,-z^{\prime \prime}(u), y^{\prime \prime}(u)\right)\right] . \tag{3.2}
\end{equation*}
$$

From (3.2),

$$
\begin{equation*}
g_{1}=u, 1=1, \quad g_{2}=u,{ }_{2}=0 . \tag{3.3}
\end{equation*}
$$

An orthonormal frame $\left\{e_{1}, e_{2}, G\right\}$ of M is given by

$$
\begin{align*}
& e_{1}=\frac{X_{u}}{\left\|X_{u}\right\|}=t-r \tau \sin v n+r \tau \cos v b, \quad\left\|X_{u}\right\|=1 \tag{3.4}\\
& e_{2}=\frac{X_{v}}{\left\|X_{v}\right\|}=-\sin v n+\cos v b, \quad\left\|X_{v}\right\|=r
\end{align*}
$$

and

$$
\begin{equation*}
G=-\cos v n-\sin v b . \tag{3.5}
\end{equation*}
$$

Here $W=r$. The coefficients of the second fundamental form are obtained as

$$
\begin{equation*}
L_{11}=-\kappa \cos v+r \tau^{2}, \quad L_{12}=r \tau, \quad L_{22}=r . \tag{3.6}
\end{equation*}
$$

From, (3.3) and (3.6), the curvature functions of M are obtained as

$$
\begin{equation*}
K=\frac{-\kappa \cos v}{r}, \quad H=\frac{1}{2 r} \tag{3.7}
\end{equation*}
$$

[9].
Corollary 3.5. ([9]) Tubular surfaces are constant mean curvature surfaces in Galilean space.

By (3.7), we write the gradient of the Gaussian curvature

$$
\begin{equation*}
\nabla K=\frac{-\kappa^{\prime} \cos v}{r} e_{1}+\frac{\kappa \sin v}{r} e_{2} . \tag{3.8}
\end{equation*}
$$

Thus, from (3.4), (3.7) and (3.8), we obtain the Cheng-Yau operator of the Gauss map as

$$
L_{1} G=-\frac{1}{r^{2}}\left\{\begin{array}{c}
-\kappa^{\prime} r \cos v t \tag{3.9}\\
+\left(\kappa^{\prime} \tau r^{2} \cos v \sin v-\kappa r \sin ^{2} v+\kappa \cos ^{2} v\right) n \\
+\left(-\kappa^{\prime} \tau r^{2} \cos ^{2} v+\kappa r \sin v \cos v+\kappa \cos v \sin v\right) b .
\end{array}\right.
$$

Now, we consider the surface M has L_{1}-harmonic Gauss map, i.e. $L_{1} G=0$. Then, from (3.9), we have

$$
\kappa^{\prime} r \cos v=0
$$

and

$$
\begin{align*}
\kappa^{\prime} \tau r^{2} \cos v \sin v-\kappa r \sin ^{2} v+\kappa \cos ^{2} v & =0, \tag{3.10}\\
-\kappa^{\prime} \tau r^{2} \cos ^{2} v+\kappa r \sin v \cos v+\kappa \cos v \sin v & =0 .
\end{align*}
$$

Writing $\kappa^{\prime} r \cos v=0$ in (3.10), we get

$$
\begin{aligned}
-\kappa r \sin ^{2} v+\kappa \cos ^{2} v & =0, \\
\kappa r \sin v \cos v+\kappa \cos v \sin v & =0 .
\end{aligned}
$$

Multiplying the first equation with cosv and the second with sinv, we obtain $\kappa \cos v=0$, which implies $\kappa=0$ or $\cos v=0$. If $\cos v=0$, again from (3.10), $\kappa=0$.

Then, we give the following theorem:

Theorem 3.6. Let M be a tubular surface given with the parametrization (3.1) in $\mathbb{G}_{3} . M$ has L_{1}-harmonic Gauss map if and only if the spine curve α is a straight line and M is an open part of a cylinder. Thus, the surface is flat.

Example 3.7. Let us consider the tubular surface M, which has L_{1}-harmonic Gauss map with the parametrization (3.1) in \mathbb{G}_{3}. Taking the straight line $\alpha(u)=$ $(u, u+1, u+2)$ and writing the Frenet vectors of it $n(u)=(0,1,0), b(u)=(0,0,1)$ and $r=4$ in (3.1), we write the parametrization of the surface M as

$$
\begin{equation*}
M: X(u, v)=(u, u+1+4 \cos v, u+2+4 \sin v) \tag{3.11}
\end{equation*}
$$

By using the software Maple, we plot the graph of the surface in (3.11).

Figure 1: Tubular surfaces M which has L_{1}-harmonic Gauss map with the spine curve $\alpha(u)=(u, u+1, u+2)$ and the radius $r=4$.

Now, we assume that the tubular surface M has L_{1}-pointwise 1-type Gauss map of the first kind, i.e., $L_{1} G=f G$ for a smooth function f. Then, from (3.5) and (3.9),

$$
\begin{align*}
& -\frac{1}{r^{2}}\left\{\begin{array}{c}
-\kappa^{\prime} r \cos v t \\
+\left(\kappa^{\prime} \tau r^{2} \cos v \sin v-\kappa r \sin ^{2} v+\kappa \cos ^{2} v\right) n \\
+\left(-\kappa^{\prime} \tau r^{2} \cos ^{2} v+\kappa r \sin v \cos v+\kappa \cos v \sin v\right) b
\end{array}\right\} \tag{3.12}\\
& =-f \cos v n-f \sin v b
\end{align*}
$$

From (3.12), we have

$$
\kappa^{\prime} \cos v=0
$$

and

$$
\begin{align*}
\kappa^{\prime} \tau r^{2} \cos v \sin v-\kappa r \sin ^{2} v+\kappa \cos ^{2} v & =f r^{2} \cos v \tag{3.13}\\
-\kappa^{\prime} \tau r^{2} \cos ^{2} v+\kappa r \sin v \cos v+\kappa \cos v \sin v & =f r^{2} \sin v
\end{align*}
$$

Similar to above, writing $\kappa^{\prime} \cos v=0$ in (3.13), we get

$$
\begin{align*}
-\kappa r \sin ^{2} v+\kappa \cos ^{2} v & =f r^{2} \cos v \tag{3.14}\\
\kappa r \sin v \cos v+\kappa \cos v \sin v & =f r^{2} \sin v
\end{align*}
$$

Multiplying the first equation with $\cos v$, the second with $\sin v$, and combining them, we obtain $f=\frac{\kappa \cos v}{r^{2}}$. Moreover, since $\kappa^{\prime} \cos v=0$, we have two cases: $\kappa=0$ or κ is a constant. If $\kappa=0$, the tubular surface M has L_{1}-harmonic Gauss map. Thus, κ is a nonzero constant.

Theorem 3.8. Let M be a tubular surface given with the parametrization (3.1) in $\mathbb{G}_{3} . M$ has L_{1}-pointwise 1-type Gauss map of the first kind if and only if the curvature κ of the curve is constant and $f=-\frac{K}{r}$.

Corollary 3.9. The spine curve of the surface which has L_{1}-pointwise 1-type Gauss map of the first kind is a Salkowski curve in \mathbb{G}_{3}.

Example 3.10. Let us consider the tubular surface M, which has L_{1}-pointwise 1 -type Gauss map of the first kind with the parametrization (3.1) in \mathbb{G}_{3}. For the curves $\alpha_{1}(u)=(u, \cos u, \sin u), \alpha_{2}(u)=\left(u, \frac{u^{2}}{2}, 0\right)$, and the radius $r=2$, we write the parametrizations of the surfaces M_{1} and M_{2} as

$$
\begin{align*}
& M_{1}: X(u, v)=(u, \cos u-2 \cos (u+v), \sin u-2 \sin (u+v)), \tag{3.15}\\
& M_{2}: X(u, v)=\left(u, \frac{u^{2}}{2}+2 \cos v, 2 \sin v\right) .
\end{align*}
$$

We again use Maple to plot the graphs of the surfaces in (3.15).

Figure 2: Tubular surfaces M_{1} and M_{2} which have L_{1}-harmonic Gauss map with the spine curves $\alpha_{1}(u)=(u, \cos u, \sin u), \alpha_{2}(u)=\left(u, \frac{u^{2}}{2}, 0\right)$ and the radius $r=2$.

Lastly, we consider that the tubular surface M has L_{1}-pointwise 1 -type Gauss map of the second kind, i.e., $L_{1} G=f(G+C)$ for a smooth function f and a nonzero constant vector C. From the equations (2.6) and (3.9), we can write the vector C as

$$
C=-\frac{1}{f r^{2}}\left(-\kappa^{\prime} r \cos v t+A(u, v) n+B(u, v) b\right),
$$

where

$$
\begin{aligned}
& A(u, v)=\kappa^{\prime} \tau r^{2} \cos v \sin v-\kappa r \sin ^{2} v+\kappa \cos ^{2} v-f r^{2} \cos v \\
& B(u, v)=-\kappa^{\prime} \tau r^{2} \cos ^{2} v+\kappa r \sin v \cos v+\kappa \cos v \sin v-f r^{2} \sin v
\end{aligned}
$$

Since C is a nonzero constant vector, $\widetilde{\nabla}_{e_{1}} C=0$ and $\widetilde{\nabla}_{e_{2}} C=0$. Thus, we have

$$
\begin{align*}
0=\widetilde{\nabla}_{e_{1}} C= & e_{1}\left[\frac{\kappa^{\prime} \cos v}{f r}\right] t \\
& +\left(e_{1}\left[\frac{-A(u, v)}{f r^{2}}\right]+\frac{\tau B(u, v)}{f r^{2}}+\frac{\kappa \kappa^{\prime} \cos v}{f r}\right) n \tag{3.16}\\
& +\left(e_{1}\left[\frac{-B(u, v)}{f r^{2}}\right]-\frac{\tau A(u, v)}{f r^{2}}\right) b
\end{align*}
$$

and

$$
\begin{equation*}
0=\widetilde{\nabla}_{e_{2}} C=e_{2}\left[\frac{\kappa^{\prime} \cos v}{f r}\right] t+e_{2}\left[\frac{-A(u, v)}{f r^{2}}\right] n+e_{2}\left[\frac{-B(u, v)}{f r^{2}}\right] b \tag{3.17}
\end{equation*}
$$

Since

$$
e_{1}\left[\frac{\kappa^{\prime} \cos v}{f r}\right]=e_{2}\left[\frac{\kappa^{\prime} \cos v}{f r}\right]=0
$$

we get

$$
\begin{aligned}
\kappa^{\prime \prime} f & =\kappa^{\prime} f_{u} \\
-f \sin v & =f_{v} \cos v
\end{aligned}
$$

From the last differential equation system,

$$
\begin{equation*}
f=a \kappa^{\prime} \cos v \tag{3.18}
\end{equation*}
$$

where a is a real constant. By the equation (3.17),

$$
e_{2}\left[\frac{-A(u, v)}{f r^{2}}\right]=e_{2}\left[\frac{-B(u, v)}{f r^{2}}\right]=0
$$

which means

$$
\begin{equation*}
A(u, v)=f h_{1}(u), \quad B(u, v)=f h_{2}(u) \tag{3.19}
\end{equation*}
$$

Here $h_{1}(u)$ and $h_{2}(u)$ are any functions of u. Moreover, from (3.16),

$$
e_{1}\left[\frac{-B(u, v)}{f r^{2}}\right]-\frac{\tau A(u, v)}{f r^{2}}=0
$$

Writing (3.19) in the last equation, we obtain

$$
e_{1}\left[-h_{2}(u)\right]-\tau h_{1}(u)=0
$$

which has a solution as

$$
\begin{equation*}
h_{2}(u)=-\int \tau h_{1}(u) d u . \tag{3.20}
\end{equation*}
$$

From (3.16), we have

$$
e_{1}\left[\frac{-A(u, v)}{f r^{2}}\right]+\frac{\tau B(u, v)}{f r^{2}}+\frac{\kappa \kappa^{\prime} \cos v}{f r}=0 .
$$

Again writing (3.19) in the last equation, we obtain

$$
e_{1}\left[-h_{1}(u)\right]+\tau h_{2}(u)+\frac{\kappa r}{a}=0,
$$

which has a solution as

$$
\begin{equation*}
h_{1}(u)=\int\left(\tau h_{2}(u)+\frac{\kappa r}{a}\right) d u . \tag{3.21}
\end{equation*}
$$

Then, we give the following theorem:
Theorem 3.11. Let M be a tubular surface given with the parametrization (3.1) in \mathbb{G}_{3}. M has L_{1}-pointwise 1-type Gauss map of the second kind if and only if $f=a \kappa^{\prime} \cos v$ for a real constant a and the equations (3.19)-(3.21) are hold.

References

[1] A. T. Ali, Position vectors of curves in the Galilen Space \mathbb{G}_{3}, Matematic̈ki Vesnik, 64(2012), 200-210.
[2] L. J. Alias and N. Gürbüz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata, 121(2006), 113-127.
[3] K. Arslan and B. (Kılıç) Bayram, B. Bulca, Y. H. Kim, C. Murathan and G. Öztürk, Rotational embeddings in \mathbb{E}^{4} with pointwise 1-type Gauss map, Turk. J. Math., 35(2011), 493-499.
[4] K. Arslan, B. (Kılıç) Bayram, B. Bulca, Y. H. Kim, C. Murathan and G. Öztürk, Vranceanu surface in \mathbb{E}^{4} with pointwise 1-type Gauss map, Indian J. Pure Appl. Math., 42(2011), 41-51.
[5] B. Bulca, K. Arslan, B. Bayram and G. Öztürk, Canal surfaces in 4-dimensional Euclidean Space, Libertas Mathematica, 32(2012), 1-13.
[6] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 1. World Scientific Publishing Co., Singapore(1984).
[7] B. Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc., 35(1987), 161-186.
[8] S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225(1977), 195-204.
[9] M. Dede, Tubular surfaces in Galilean space, Math. Commun., 18(1)(2013), 209-217.
[10] S. M. B. Kashani, On some L_{1}-finite type (hyper)surfaces in \mathbb{R}^{n+1}, Bull. Korean Math. Soc., 46(2009), 35-43.
[11] Y. H. Kim and N. C. Turgay, Surfaces in \mathbb{E}^{3} with L L_{1}-pointwise 1-type Gauss map, Bull. Korean Math. Soc., 50(3)(2013), 935-949.
[12] Y. H. Kim and N. C. Turgay, On the ruled surfaces with L_{1}-pointwise 1-type Gauss map, Kyungpook Math. J., 57(1)(2017), 133-144.
[13] İ. Kişi and G. Öztürk, A new approach to canal surface with parallel transport frame, Int. J. Geom. Methods Mod. Phys., 14(2)(2017), 1-16.
[14] İ. Kişi and G. Öztürk, Tubular surface having pointwise 1-type Gauss map in Euclidean 4-space, Int. Electron. J. Geom., 12(2019), 202-209.
[15] İ. Kişi, G. Öztürk and K. Arslan, A new type of canal surface in Euclidean 4-space \mathbb{E}^{4}, Sakarya University Journal of Science, 23(2019), 801-809.
[16] G. Öztürk, B. Bulca, B. K. Bayram and K. Arslan, On canal surfaces in \mathbb{E}_{3}, Selçuk J. Appl. Math., 11(2010), 103-108.
[17] B. J. Pavkovic and I. Kamenarovic, The equiform differential geometry of curves in the Galilean space \mathbb{G}_{3}, Glas. Mat. Ser. III, 22(1987), 449-457.
[18] J. Qian and Y. H. Kim, Classifications of canal surfaces with L_{1}-pointwise 1-type Gauss map, Milan J. Math., 83(1)(2015), 145-155.
[19] O. Röschel, Die Geometrie Des Galileischen Raumes, Forschungszentrum Graz Research Centre, Austria(1986).
[20] I. M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer-Verlag Inc., New York(1979).

