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Abstract. In this note we observe that any truncated multi-index sequence has an in-

terpolating measure supported in Euclidean space. It is well known that the consistency

of a truncated moment sequence is equivalent to the existence of an interpolating measure

for the sequence. When the moment matrix of a moment sequence is nonsingular, the

sequence is naturally consistent; a proper perturbation to a given moment matrix enables

us to confirm the existence of an interpolating measure for the moment sequence. We also

illustrate how to find an explicit form of an interpolating measure for some cases.

1. Introduction

We first discuss finite sequences of real numbers and then introduce the result
of infinite sequences. Let β ≡ β(m) =

{
βi ∈ R : i ∈ Zd

+, |i| ≤ m
}
, with β0 6= 0, be a

d-dimensional multisequence of degree m. It is called a truncated moment sequence.
For a closed set K ⊆ Rd, the truncated K-moment problem (TKMP) entails finding
necessary and sufficient conditions for the existence of a positive Borel measure µ
on Rd with supp µ ⊆ K such that

βi =

∫
xi dµ(x) (i ∈ Zd

+, |i| ≤ m),
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where x ≡ (x1, . . . , xd), i ≡ (i1, . . . , id) ∈ Zd
+, and xi := xi1

1 · · ·xid
d . The measure

µ is said to be a K-representing measure for β. For the typical case K = Rd, the
problem is referred to as the truncated real moment problem (TRMP) and µ is called
simply a representing measure.

In a similar way, we consider the full moment problem for an infinite sequence
β ≡ β(∞) =

{
βi : i ∈ Zd

+

}
. As well known by H. L. Hamburger for d = 1, the

sequence has a representing measure supported on R if and only if the Hankel ma-
trice, [βi+j ]0≤i≤k, 0≤j≤k is positive semidefinite (or simply, positive). Furthermore,
T. J. Stieltjes showed that the single-index sequence has a representing measure
supported in [0,∞) if and only if both Hankel matrices, [βi+j ]0≤i≤k, 0≤j≤k and
[βi+j+1]0≤i≤k, 0≤j≤k for k ≥ 0, are positive.

When m = 2n, we define a moment matrix Md(n) of β ≡ β(2n) as

Md(n) ≡ Md(n)(β) := (β i+j) i, j∈Z
d

+: |i|, |j|≤n.

Some properties of Md(n) have been important factors for the existence of a rep-
resenting measure for β; for example, Md(n) is necessarily positive (obviously the
positivity of Md(n) is sufficient for d = 1 but not sufficient for d ≥ 2 as well known).
R. Curto and L. Fialkow have established many elegant results for various moment
problems based on a positive extension of Md(n). They also have used the func-
tional calculus in the column space of Md(n); to introduce the functional calculus,
we label the columns and rows of Md(n) with monomials X i := X i1

1 · · ·X id
d in the

degree-lexicographic order. Note that each block with the moments of the same
order in Md(n) is Hankel and that Md(n) is symmetric. In addition, one can define
a sesquilinear form: for i, j ∈ Zd

+,

〈X i, X j〉Md(n) := 〈Md(n)X̂ i, X̂ j〉 = βi+j,

where X̂ i is the column vector associated to the monomial X i.
For a motivation of the main result, let us consider the basic Fibonacci sequence.

In particular, take the first six moments and write them as a 2-dimensional moment
sequence β : {β00, β10, β01, β20, β11, β02}= {1, 1, 2, 3, 5, 8}. Since M2(1)(β) is not
positive, β does not admit a representing measure. However, one can find a formula

to express β, such as βij = 1 ·
(
1
2

)i
(1)j + 1

7 ·
(
9
2

)i
(7)j − 1

7 · (1)i(0)j ; that is, there
is a signed measure µ = 1 · δ( 1

2 ,1)
+ 1

7 · δ( 9
2 ,7)

− 1
7 · δ(1,0) for β to get an integral

representation. The coefficients in the formula of the measure are called densities

and the points are atoms of the measure. This example shows that even though a
sequence has no representing measure, it may have a signed measure so that some
of the densities might be negative. We define such a measure as an interpolating

measure µ for β (truncated or full) as a Borel measure (not necessarily positive)
such that βi =

∫
xi dµ(x), i ∈ Zd

+.)
Due to the Jordan decomposition theorem, every interpolating measure µ has

a decomposition, µ = µ+ − µ− of two positive measures µ+ and µ−, at least one
of which is finite. Interpolating measures appear in many scientific fields. For
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example, they are useful to represent electric charge; the moment problem about
a signed measure is related to quantum physics as in [10]. Furthermore, there is
a possibility that Gauss-Jacobi quadratures would be generalized through moment
sequences with a signed measure (see [13]). Analog images are stored in a computer
in the form of digital information using pixels. Each pixel contains information
about color or contrast, which is identified by an integer value. Since the position
of the pixel can be expressed with a bi-index, the image data can be considered
as a bivariate truncated moment sequence. Our main results show that all image
data can be represented by an interpolating measure. Therefore, if one can find a
simple measure corresponding to the image, it will be useful in many fields of image
processing.

For d = 1, R. P. Boas showed that any single-index “infinite” sequence of real
numbers admits an interpolating measure supported in [0,∞); that is, one can
always find a measure for any sequence of the form µ = µ+−µ− such that both µ+

and µ− are positive Borel measures supported in [0,∞] [2]. Moreover, G. Flessas, K.
Burton, and R. R. Whitehead found an algorithm to find such a measure supported
in the real line for a “finite” real sequence {sj}2n−1

j=0 [10]. As a generalization of these
results, we will see that any finite sequence has an interpolating measure supported
in Rd for any d ≥ 2. Notice that since moment problems about finite sequences are
known to be more general than problems about infinite sequences due to the work
of J. Stochel [15], the main results may contribute to an investigation of infinite
sequences.

We conclude this section with another application of the moment problem to
the numerical integration. For more details, readers can refer to [11].

Definition 1.1. A quadrature (or cubature) rule of size p and precision m is
a numerical integration formula which uses p nodes, is exact for all polynomials of
degree at most m, and fails to recover the integral some polynomial of degree m+1.

Example 1.2. (Gaussian Quadrature; size n, precision 2n − 1) We would
like to find nodes t0, t1 . . . , tn−1 satisfying

(1.1)

∫ 1

−1

f(t) dt =

n−1∑

j=0

ρjf (tj)

for every polynomial f with deg f ≤ 2n− 1. Now, we consider interpolating equa-
tions with polynomials and we get

(1.2)
n−1∑

j=0

ρjt
k
j =

∫ 1

−1

tk dt =

{
0 k = 1, 3, . . . , 2n− 1;
2

k+1 k = 0, 2, . . . , 2n− 2.

If n = 2, (1.2) becomes the system of polynomial equations




ρ0 + ρ1 = 2;
ρ0t0 + ρ1t1 = 0;
ρ0t

2
0 + ρ1t

2
1 = 2/3;

ρ0t
3
0 + ρ1t

3
1 = 0.
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The solution is ρ0 = ρ1 = 1, t0 = −1/
√
3, and t1 = 1/

√
3. Thus we easily see

∫ 1

−1

(a0 + a1t +a2t
2 + a3t

3
)
dt

= a0(ρ0 + ρ1) + a1(ρ0t0 + ρ1t1) + a2
(
ρ0t

2
0 + ρ1t

2
1

)
+ a3

(
ρ0t

3
0 + ρ1t

3
1

)

=

∫ 1

−1

(
a0 + a1t+ a2t

2 + a3t
3
)
dµ,

where µ := ρ0δt0 + ρ1δt1 . This solution in numerical analysis textbooks is usually
based on Legendre polynomials. With an approach via the truncated moment
problem, we can find an alternative solution as follows: Let β0 := 2, β1 := 0, β2 :=
2/3, β3 := 0 and form a Hankel matrix H with a parameter α,

H :=



β0 β1 β2

β1 β2 β3

β2 β3 α


 =




2 0 2/3
0 2/3 0
2/3 0 α




For the sake of a minimal number of nodes, we want rank H = 2; thus, α = 2/9.
After labeling the columns in H as 1, T, T 2, the column relation in H can be written
as T 2 = (1/3)1. In [3], it is known the roots of the equation t2 = 1/3 (that is,
t0 = −1/

√
3 and t1 = 1/

√
3) are the nodes. We may compute the densities by

solving the Vandermonde equation:




1 1
t0 t1
t20 t21
t30 t31




(
ρ0
ρ1

)
=




β0

β1

β2

β3


 ,

whose solution is obviously ρ0 = ρ1 = 1.

This method seems to provide an economical way to solve a qudrature problem
and we will see the main result of this article gives a technique for more general
cases, that is, when a signed measure arises in (1.1).

2. The Consistency and Rank-one Decompositions of Moment Matrices

This Section is designed to introduce some background knowledge for dealing
with truncated moment sequences.

2.1 The consistency

We are about to define an algebraic set associated to Md(n). Let P :=
R[x1, . . . , xd] and let Pk := {p ∈ P : deg p ≤ k}. Since we labeled columns in Md(n)
with monomials, a column relation in Md(n) can be written as p(X) = 0 for some
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p ∈ Pn. Let Z(p) denote the zero set of a polynomial p and we define the algebraic

variety Vβ of β or Md(n) by

(2.1) Vβ ≡ VMd(n) :=
⋂

p(X)=0

Z(p).

Given β ≡ β(m), define the Riesz functional Λ ≡ Λβ : Pm → R by Λ
(∑

aix
i
)
:=∑

aiβi. We also define a notion which is the key to the main result of this note;
β ≡ β(2n) or Md(n) ≡ Md(n)(β

(2n)) is said to be V -consistent for a set V ∈ Rd if
the following holds:

(2.2) p ∈ P2n, p|V ≡ 0 =⇒ Λ(p) = 0.

This is a property of the moment sequence that guarantees the existence of an
interpolating measure. Here is a formal result:

Lemma 2.1. ([5, Lemma 2.3]) Let L : P2n → R be a linear functional and let

V ⊆ Rd. Then the following statements are equivalent:

(i) There exist α1, . . . , αℓ ∈ R and there exist w1, . . . ,wℓ ∈ V such that for all

p ∈ P2n

(2.3) L(p) =

ℓ∑

k=1

αkp(wk).

(ii) If p ∈ P2n and p|V ≡ 0, then L(p) = 0.

If L is the Riesz functional of the moment sequence β, then Lemma 2.1(ii) is just

as the Vβ-consistency condition of β and
∑ℓ

k=1 αkδwk
is an interpolating measure

for β. While it seems like Lemma 2.1 gives a concrete solution for β to have an
interpolating measure, we should indicate that checking the consistency is a highly
nontrivial process. To show that β is V -consistent, it is essential (but, difficult) to
find a representation of all the polynomials vanishing on V .

For Md(n) to have a (positive) representing measure, β must be Vβ-consistent;
in the extremal cases (that is, rank Md(n) = card Vβ), it is known that Md(n)(β) is
consistent if and only if β admits a unique rank Md(n)-atomic representing measure
whose support is exactly Vβ [5].

In particular, when a positive Md(n) is invertible, we know Vβ = Rd and the
only polynomial vanishing on Rd is the zero polynomial. Thus, Md(n) is naturally
consistent and has an interpolating measure.

2.2 Rank-one decompositions

After rearranging the terms in (2.3) by the sign of densities, we write a measure
µ for a consistent Md(n) as

(2.4) µ =

s∑

k=1

αkδwk
−

ℓ∑

k=s+1

αkδwk
,
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where αk > 0 for all k = 1, . . . , ℓ; we denote the first summand in (2.4) as µ+ and
the second as µ−. Due to this fact, a bound of the cardinality of the support of an
interpolating measure is established:

Proposition 2.2. A minimal interpolating measure for a consistent Md(n) is at

most (2n+ 1)(2n+ 2)-atomic.

Proof. If Md(n) is consistent with a measure µ = µ+ − µ− of two positive finitely
atomic measures µ+ and µ−, we may write Md(n) = M [µ+] −M [µ−], where each
term is a moment matrix generated by the corresponding measure of the same size
as Md(n). A result [1, Theorem 2] by C. Bayer and J. Teichmann showed that the
cardinality of the support of a positive measure is at most dimP2n in the presence
of a representing measure for a moment matrix associated to a moment sequence
of degree 2n.

Since M [µ+] and M [µ−] have a positive measure, it follows that a minimal
measure for each moment matrix is at most dimP2n-atomic. Therefore, we conclude
that the cardinality of a minimal interpolating measure is at most 2(dimP2n) =
(2n+ 1)(2n+ 2).

Many solutions of TRMP for a positive measure depend on finding a positive
moment matrix extension of Md(n). However, this approach needs to allow new
parameters and constructing an extension is not handy for most cases when n ≥ 3.
Alternatively, R. Curto and the second-author recently have used a decomposition
of Md(n) for the study of TRMP. To introduce the decomposition, we now define
some notations: Let w = (w1, . . . , wd) ∈ Rd and let

(i) v(w) :=
(
1 w1 · · · wd w2

1 w1w2 w1w3 · · · wd−1wd w2
d · · · wn

1 · · · wn
d

)
, which

is a row vector corresponding to the monomials wi in the degree-lexicographic
order.

(ii) P (w) := v(w)Tv(w), which is indeed the rank-one moment matrix generated
by the measure δw.

For example, if d = n = 2 and w = (a, b), then

P (w) =




1 a b a2 ab b2

a a2 ab a3 a2b ab2

b ab b2 a2b ab2 b3

a2 a3 a2b a4 a3b a2b2

ab a2b ab2 a3b a2b2 ab3

b2 ab2 b3 a2b2 ab3 b4




.(2.5)

Thus, ifMd(n) has an interpolating measure µ supported in a set {w1, . . . ,wℓ}, then
one should be able to write Md(n) =

∑ℓ

k=1 dkP (wk) for some d1, . . . , dℓ ∈ R \ {0}.
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3. Main Result

We will verify that any truncated moment matrix turns out to be Rd-consistent
after applying proper perturbations, and so it admits an interpolating measure. To
prove the main result, we begin with auxiliary results:

Lemma 3.1. ([12]) Assume A and B are matrices of the same size. Then rank (A+
B) = rank A + rank B if and only if range A ∩ range B = {0} and range AT ∩
range BT = {0}.

As a special case of Lemma 3.1, one can easily prove:

Lemma 3.2. Assume A and B are Hermitian matrices of the same size and

rank B = 1. Then rank (A+B) = 1+rank A if and only if range A∩range B = {0}.

We are ready to introduce a crucial lemma:

Lemma 3.3. A point w is in VMd(n) if and only if the vector v(w) is in

range Md(n).

Proof. Assume that
{
pk(X) ≡ ∑

a
(k)
i Xi

}ℓ

k=1
is the set of polynomials obtained

from column relations in Md(n). Note that span {p̂k}ℓk=1 = kerMd(n). Now ob-
serve:

w ∈ VMd(n) ⇐⇒ pk(w) = 0 for k = 1, . . . , ℓ

⇐⇒
∑

a
(k)
i wi = 0 for k = 1, . . . , ℓ

⇐⇒ 〈p̂k,v(w)〉 = 0 for k = 1, . . . , ℓ

⇐⇒ p̂k ⊥ v(w) for k = 1, . . . , ℓ

⇐⇒ v(w) ∈ (kerMd(n))
⊥ = range Md(n).

Theorem 3.4. Any truncated moment sequence β ≡ β(2n) of degree 2n has an

interpolating measure in Rd for any positive d ∈ Z+.

Proof. Pick a point w1 ∈ Rd \ Vβ . Then we know from Lemma 3.3 that
v(w1) 6∈ range Md(n)(β). Since range P (w1) = {αw1 : α ∈ R}, it holds that
range Md(n)(β) ∩ range P (w1) = {0}. Therefore, it follows from Lemma 3.2 that
rank (Md(n)(β)+P (w1)) = 1+rank Md(n)(β). Next, choose a point w2 which not
in the algebraic variety of Md(n)(β)+P (w1) and we know from the same argument
that rank (Md(n)(β) + P (w1) + P (w2)) = 2 + rank Md(n)(β). Keep this process

until we obtain an invertible matrix M̃ := Md(n)(β) +
∑ℓ

k=1 P (wk) for some ℓ. M̃
is naturally consistent, and so it admits an interpolating measure, say µ̃. Thus,
Md(n)(β) has an interpolating measure of the form µ̃−∑ℓ

k=1 δwk
.
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Theorem 3.5. Any finite sequence has an interpolating measure.

Proof. It suffices to cover the cases when the given sequence is not the type of
β(2n). Such a sequence cannot fill up the associated moment matrix, so we use new
parameters to complete the moment matrix. If it is possible to make the moment
matrix invertible, then the extended moment sequence is consistent. Thus, the given
sequence has an interpolating measure. Otherwise, one can follow the same process
in the proof of Theorem 3.4 and verify that the sequence admits an interpolating
measure.

Before we conclude this note, let us discuss how investigate the location of
atoms of an interpolating measure. In addition, an algorithmic approach to find an
explicit formula of a measure will be presented through a concrete example. Recall
that in the presence of a (positive) representing measure µ for a positive Md(n)(β),
Proposition 3.1 in [4] states that

p̂ ∈ kerMd(n)(β) ⇐⇒ p(X) = 0 ⇐⇒ supp µ ⊆ Z(p).

This result provides an evidence that where the atoms of µ lie for a singular Md(n);
that is, the algebraic variety of Md(n) must contain the support of a representing
measure. However, the following example shows such an argument is no longer valid
for the moment problem about an interpolating measure; consider

(3.1) M2(1) ≡ M2(1)
(
β(2)

)
=




−1 −16 −4
−16 −94 −10
−4 −10 2


 .

Note that M2(1) has a single column relation X2 = −(4/3)1 + (1/3)X1. Indeed,
the sequence can be generated by an interpolating measure ν = δ(−2,1)+ δ(−2,−2)−
δ(1,1) − δ(10,1); but, different from the case for a positive measure, supp ν 6⊆ Z(x2 +
4/3− (1/3)x1) = Vβ(2) . In other words, an interpolating measure for the sequence
may have atoms outside of the algebraic variety. Nonetheless, one can still find an
interpolating measure supported in the algebraic variety of M2(1) as follows:

Example 3.6. We illustrate how to find an interpolating measure of the sequence
in (3.1). To find an interpolating measure supported in the algebraic variety of
M2(1), select a point

(
a, a−4

3

)
∈ Z(x2 + 4/3− (1/3)x1) for some a ∈ R. Using the

rank-one decomposition, we write

(3.2) M2(1) = M̃2(1) + u




1 a a−4
3

a a2 a(a−4)
3

a−4
3

a(a−4)
3

(a−4)2

9




for some u ∈ R. Note that rank M2(1) = 2 and we are attracted to guess that
a minimal interpolating measure is 2-atomic (cf. Lemma 3.2 and 3.3). In order
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to find such a measure, we impose a condition that rank M̃2(1) = 1; a calculation

shows rank M̃2(1) = 1 if and only if u = 162/(a2 − 32a + 94). If we take u =
162/(a2 − 32a+ 94), then

M2(1) =
−(a− 16)2

a2 − 32a+ 94




1 2(8a−47)
a−16

2(2a−5)
a−16

2(8a−47)
a−16

4(8a−47)2

(a−16)2
4(2a−5)(8a−47)

(a−16)2

2(2a−5)
a−16

4(2a−5)(8a−47)
(a−16)2

4(2a−5)2

(a−16)2




+
162

a2 − 32a+ 94




1 a a−4
3

a a2 a(a−4)
3

a−4
3

a(a−4)
3

(a−4)2

9


 .

Therefore, we get an interpolating measure µ = −(a−16)2

a2−32a+94δ( 2(8a−47)
a−16 ,

2(2a−5)
a−16 ) +

162
a2−32a+94δ(a,a−4

3 ) (with a2 − 32a + 94 6= 0 and a 6= 16), which is supported in

VM2(1).

Removing noise from the original data is a challenging problem in many different
fields. Moment sequences need to be modified since data obtained from physical
experiments and phenomena are often corrupt or incomplete. By Theorem 3.5, one
can find an interpolating measure µ for the given data, which is µ = µ+−µ− of two
positive measures µ+ and µ−. Assuming that µ− is generated by the distribution
of noise, µ+ can be a measure for the denosing data in a sense. In Example 3.7,
M2(2) can be considered as an observed data with noise. After removing the noise,
one can find the original data as in the following example.

Example 3.7. Consider a truncated moment sequence β(4):

β00 = 6, β10 = 6, β01 = 20, β20 = 18, β11 = 16, β02 = 68,

β30 = 30, β21 = 56, β12 = 40, β03 = 236,

β40 = 66, β31 = 88, β22 = 176, β13 = 88, β04 = 836.

Construct its moment matrix as follows:

M̃2(2) =




6 6 20 18 16 68
6 18 16 30 56 40
20 16 68 56 40 236
18 30 56 66 88 176
16 56 40 88 176 88
68 40 236 176 88 836




It is easy to check that the representing measure is µ = 2δ(−1,4) + 4δ(2,3). Assume
that for sufficiently small perturbation we have
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M2(2) =




5.990000 5.995000 19.998000 17.997500 15.999000 67.999600
5.995000 17.997500 15.999000 29.998750 55.999500 39.999800
19.998000 15.999000 67.999600 55.999500 39.999800 235.999920
17.997500 29.998750 55.999500 65.999375 87.999750 175.999900
15.999000 55.999500 39.999800 87.999750 175.999900 87.999960
67.999600 39.999800 235.999920 175.999900 87.999960 835.999984



,

which is not positive semidefinite. So, arbitrarily small perturbations of a given
sequence eject one from the cone of positive semidefinite matrices. As a result, this
sequence does not have a representing measure. Instead, one can find interpolating
measures for the sequence. Concretely, one of them is µ = −0.01δ(0.5,0.2)+2δ(−1,4)+
4δ(2,3); here the first term with the negative density can be considered as noise.

Concluding Remark. According to the main results, we can confirm the exis-
tence of an interpolating measure for any finite sequence. A proper moment matrix
perturbation enables us to obtain an invertible moment matrix which is consistent.
However, invertible matrices may not be useful to find a specific representation of the
measure. Rather, it is more advantageous to obtain a moment matrix whose com-
plete solution is known; for example, we may try to make the resulting matrix to be
flat and positive semidefinite at the same time. Recall that the Flat Extension The-
orem in [4] says if Md(n) is positive semidefinite and rank Md(n) = rank Md(n−1),
then it has a unique rank Md(n)-atomic (minimal) representing measure. The fol-
lowing example illustrates how this alternative method works.

Example 3.8. Consider a sequence {0, 1, 0,−2, 1, 2, 4,−2, 1,−8,−8, 4,−2} and let
us try to find an interpolating measure for it on R2. Note that the sequence even
starts with 0 and it is not be a moment sequence of degree 4 due to lack of two
terms. So we add two parameters in the tail and construct β ≡ β(4) with as follows:

β00 = 0, β10 = 1, β01 = 0, β20 = −2, β11 = 1, β02 = 2,

β30 = 4, β21 = −2, β12 = 1, β03 = −8,

β40 = −8, β31 = 4, β22 = −2, β13 = g, β04 = h.

Observe that M ≡ M2(2)(β) has a column relation X2 + 2X = 0. Let P (a, b)
be the rank-one moment matrix exactly as in (2.5). Thus, if (a, b) 6∈ Z(x2 + 2x),
then M + P (a, b) would be invertible with a proper choice of g and h. However,
it is not easy to find an explicit form of an interpolating measure for a moment
sequence with an invertible moment matrix. As a different approach, we consider

an atom on x2 + 2x = 0 so that the rank of M̃(2) := M + P (a, b) will not increase

but there is a chance for M̃(2) to become positive semidefinite and flat; that is,

rank M̃(2) = rank M̃(1) = 3. If we take (a, b) = (−2, 1), g = 1, and h = 62, then

we can easily check that rank M̃(2) is as desired. Thus, it follows from the flat

extension theorem that M̃(2) has a unique 3-atomic representing measure. Using
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the results in [4], we see the measure is given by

µ̃ :=
1

2
δ(−2,1) +

65− 7
√
65

260
δ(

0,− 5
2−

√

65
2

) +
65 + 7

√
65

260
δ(

0,− 5
2+

√

65
2

).

An interpolating measure µ for M satisfies µ̃ = µ+ δ(−2,1) so that we get

µ = −1

2
δ(−2,1) +

65− 7
√
65

260
δ(

0,− 5
2−

√

65
2

) +
65 + 7

√
65

260
δ(

0,− 5
2+

√

65
2

).
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