DOI QR코드

DOI QR Code

Effect of Sulfation on Physicochemical Properties of ZrO2 and TiO2 Nanoparticles

  • Wijaya, Karna (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University) ;
  • Pratika, Remi Ayu (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University) ;
  • Fitri, Edhita Rahmawati (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University) ;
  • Prabani, Prisnu Fadilah (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University) ;
  • Candrasasi, Yufinta (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University) ;
  • Saputri, Wahyu Dita (Research Center for Physics, National Research and Innovation Agency (BRIN)) ;
  • Mulijani, Sri (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung) ;
  • Patah, Aep (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung) ;
  • Wibowo, Arief Cahyo (Department of Applied Sciences, College of Arts and Sciences, Abu Dhabi University)
  • Received : 2021.09.04
  • Accepted : 2022.03.07
  • Published : 2022.03.27

Abstract

Effect of sulfation processes on the physicochemical properties of ZrO2 and TiO2 nanoparticles were thoroughly investigated. SO4/ZrO2 and SO4/TiO2 catalysts were synthesized to identify the acidity character of each. The wet impregnation method of ZrO2 and TiO2 nanoparticles was employed using H2SO4 with various concentrations of 0.5, 0.75, and 1 M, followed by calcination at 400, 500, and 600 ℃ to obtain optimum conditions of the catalyst synthesis process. The highest total acidity was found when using 1 M SO4/ZrO2-500 and 1 M SO4/TiO2-500 catalysts, with total acidity values of 2.642 and 6.920 mmol/g, respectively. Sulfation increases titania particles via agglomeration. In contrast, sulfation did not practically change the size of zirconia particles. The sulfation process causes color of both catalyst particles to brighten due to the presence of sulfate. There was a decrease in surface area and pore volume of catalysts after sulfation; the materials' mesoporous structural properties were confirmed. The 1 M SO4/ZrO2 and 1 M SO4/TiO2 catalysts calcined at 500 ℃ are the best candidate heterogeneous acid catalysts synthesized in thus work.

Keywords

Acknowledgement

This research was funded by Universitas Gadjah Mada through Research Kolaborasi Indonesia (RKI), Contract No.: 813/UN1/DITLIT/DIT-LIT/PT/2020. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. E. P. Susi, K. Wijaya, Wangsa, R. A. Pratika and P.L. Hariani., Asian J. Chem., 32, 2773 (2020). https://doi.org/10.14233/ajchem.2020.22708
  2. X. Mo, E. Lotero, C. Lu, Y. Liu and J. G. Goodwin, Catal. Lett., 123, 1 (2008). https://doi.org/10.1007/s10562-008-9456-y
  3. S. Wenping and L. Jianwei, React. Kinet., Mech. Catal., 111, 215 (2014). https://doi.org/10.1007/s11144-013-0628-4
  4. R. A. Pratika, K. Wijaya and W. Trisunaryanti, J. Environ. Chem. Eng., 9, 106547 (2021). https://doi.org/10.1016/j.jece.2021.106547
  5. A. R. Zarubica, M. N. Miljkovic, E. E. Kiss and G. C. Boskovic, React. Kinet. Catal. Lett., 90, 145 (2007). https://doi.org/10.1007/s11144-007-5051-2
  6. X. Song and A. Sayari, Catal. Rev.: Sci. Eng., 38, 329 (1996). https://doi.org/10.1080/01614949608006462
  7. C. Carlucci, L. Degennaro and R. Luisi, Catalysts, 9, 75 (2019). https://doi.org/10.3390/catal9010075
  8. J. Gardi, A. Hassanpour, X. Lai and M. H. Ahmed, Appl. Catal., A, 527, 81 (2016). https://doi.org/10.1016/j.apcata.2016.08.031
  9. M. S. Ore, K. Wijaya, W. Trisunaryanti, W. D. Saputri, E. Heraldy, M. W. Yuwana, P. L. Hariani, A. Budiman and S. Sudiono, J. Environ. Chem. Eng., 8, 104205 (2020). https://doi.org/10.1016/j.jece.2020.104205
  10. K. J. A Raj and B. Viswanathan, ACS Appl. Mater. Interfaces, 1, 2462 (2019).
  11. X. H. Lin, X. J. Yin, J. Y. Liu and S. F. Y Li, Appl. Catal., B, 203, 731 (2017). https://doi.org/10.1016/j.apcatb.2016.10.068
  12. M. Hino, M. Kurashige, H. Matsuhashi and K. Arata, Thermochim. Acta, 441, 35 (2006). https://doi.org/10.1016/j.tca.2005.11.042
  13. M. Busto, C. R. Vera and J. M. Grau, Fuel Process. Technol., 92, 1675 (2011). https://doi.org/10.1016/j.fuproc.2011.04.010
  14. A. Sinhamahapatra, N. Sutradhar, M. Ghosh, H. C. Bajaj and A. B. Panda, Appl. Catal., A, 402, 87 (2011). https://doi.org/10.1016/j.apcata.2011.05.032
  15. S. J. Sekewael, R. A. Pratika, L. Hauli, A. K. Amin, M. Utami and K. Wijaya, Catalysts, 12, 191 (2022). https://doi.org/10.3390/catal12020191
  16. K. Wijaya, M. A. Kurniawan, W. D. Saputri, W. Trisunaryanti, M. Mirzan, P. L. Hariani and A. D. Tikoalu, J. Environ. Chem. Eng., 9, 105399 (2021). https://doi.org/10.1016/j.jece.2021.105399
  17. M. H. Sarvari and E. Sodagar, C. R. Chim., 16, 229 (2013). https://doi.org/10.1016/j.crci.2012.10.016
  18. V. J. L. Ropero, A. A. Perez, R. Gomez and N. M. Gomez, Appl. Catal., A, 379, 24 (2010). https://doi.org/10.1016/j.apcata.2010.02.020
  19. L. Hauli, K. Wijaya and R. Armunanto, Orient. J. Chem., 34, 1559 (2018). https://doi.org/10.13005/ojc/340348
  20. A. Patel, V. Brahmkhatri and N. Singh, Renew. Energy, 51, 227 (2013). https://doi.org/10.1016/j.renene.2012.09.040
  21. M. Utami, K. Wijaya and W. Trisunaryati, Key. Eng. Mater., 757, 131 (2017). https://doi.org/10.4028/www.scientific.net/KEM.757.131
  22. A. B. Fadhil, A. M. Aziz, M. H. Al-Tamer, Energy Conversion Manag., 108, 255 (2016). https://doi.org/10.1016/j.enconman.2015.11.013