Acknowledgement
This work was supported by a National Research Foundation of Korea grant funded by the Korean government (NRF-2018S1A3A2075114).
References
- Aizawa, A. (2003). An information-theoretic perspective of tf-idf measures. Information Processing & Management, 39(1), 45-65. http://doi.org/10.1109/ICHI.2018.00058
- Al Essa, A. (2018). Efficient Text Classification with Linear Regression Using a Combination of Predictors for Flu Outbreak Detection. Doctoral dissertation, University of Bridgeport.
- Alessa, A., Faezipour, M., & Alhassan, Z. (2018). Text classification of flu-related tweets using fasttext with sentiment and keyword features. In 2018 Institute of Electrical and Electronics Engineers International Conference on Healthcare Informatics (ICHI), 366-367. http://doi.org/10.1109/ICHI.2018.00058
- Athiwaratkun, B., Wilson, A. G., & Anandkumar, A. (2018). Probabilistic fasttext for multi-sense word embeddings. arXiv. https://doi.org/10.48550/arXiv.1806.02901
- Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3, 993-1022. https://doi.org/10.1016/b978-0-12-411519-4.00006-9
- Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008
- Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191-235. https://doi/org/10.1177/053901883022002003
- Cheng, C. H. & Chen, H. H. (2019). Sentimental text mining based on an additional features method for text classification. PloS One, 14(6), e0217591. https://doi.org/10.1371/journal.pone.0217591
- Chronis, G. & Erk, K. (2020). When is a bishop not like a rook? When it's like a rabbi! Multi-prototype BERT embeddings for estimating semantic relationships. In Proceedings of the 24th Conference on Computational Natural Language Learning, 227-244. https://doi.org/10.18653/v1/2020.conll-1.17
- Conway, M. & O'Connor, D. (2016). Social media, big data, and mental health: current advances and ethical implications. Current Opinion in Psychology, 9, 77-82. https://doi.org/10.1016/j.copsyc.2016.01.004
- Coppersmith, G., Dredze, M., & Harman, C. (2014, June). Quantifying mental health signals in Twitter. In Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, 51-60. https://doi.org/10.3115/v1/w14-3207
- Coppersmith, G., Dredze, M., Harman, C., Hollingshead, K., & Mitchell, M. (2015). CLPsych 2015 shared task: Depression and PTSD on Twitter. In Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, 31-39. https://doi.org/10.3115/v1/w15-1204
- De Choudhury, M., Kiciman, E., Dredze, M., Coppersmith, G., & Kumar, M. (2016). Discovering shifts to suicidal ideation from mental health content in social media. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 2098-2110. https://doi.org/10.1145/2858036.2858207
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv. http://arxiv.org/abs/1810.04805
- Friedrich, M. J. (2017). Depression is the leading cause of disability around the world. Jama, 317(15), 1517-1517. https://doi.org/10.1001/jama.2017.3826
- Guntuku, S. C., Yaden, D. B., Kern, M. L., Ungar, L. H., & Eichstaedt, J. C. (2017). Detecting depression and mental illness on social media: an integrative review. Current Opinion in Behavioral Sciences, 18, 43-49. https://doi.org/10.1016/j.cobeha.2017.07.005
- Kim Y. (2014). Convolutional neural networks for sentence classification. EMNLP2014-2014 Conference on Empirical Methods in Natural Language Processig, Association for Computational Linguistics, 1746-1751. https://doi.org/10.3115/v1/d14-1181
- KNU Korean Emotion Dictionary (2018, November 5). Available: https://github.com/park1200656/KnuSentiLex
- Lalithamani, N., Thati, L. S., & Adhikesavan, R. (2014). Sentence level sentiment polarity calculation for customer reviews by considering complex sentential structures. IJRET: International Journal of Research in Engineering and Technology, 3(3), 433-438. https://doi.org/10.15623/ijret.2014.0303081
- Lee G. (2019). Korean Ebedding. Korea: Acorn Publishing.
- Liang, H., Sun, X., Sun, Y., & Gao, Y. (2017). Text feature extraction based on deep learning: a review. EURASIP Journal on Wireless Communications and Networking, 2017(1), 1-12. https://doi.org/10.1186/s13638-017-0993-1
- Lilleberg, J., Zhu, Y., & Zhang, Y. (2015). Support vector machines and word2vec for text classification with semantic features. In 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), 136-140. Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ICCI-CC.2015.7259377
- Lim, J. H., Kim, H. K., & Kim, Y. K. (2020). Recent R&D trends for pretrained language model. Electronics and Telecommunications Trends, 35(3), 9-19. https://doi.org/10.22648/ETRI.2020.J.350302
- Liu, G. & Guo, J. (2019). Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing, 337, 325-338. https://doi.org/10.1016/j.neucom.2019.01.078
- Martin, L., Muller, B., Suarez, P. J. O., Dupont, Y., Romary, L., de la Clergerie, E. V., Seddah, D., & Sagot, B. (2019). Camembert: a tasty french language model. https://doi.org/10.18653/v1/2020.acl-main.645
- Moon, E. & Han, S. (2011). A qualitative method to find influencers using similarity-based approach in the blogosphere. International Journal of Social Computing and Cyber-Physical Systems, 1(1), 56-78. https://doi.org/10.1504/ijsccps.2011.043604
- Mowery, D., Smith, H., Cheney, T., Stoddard, G., Coppersmith, G., Bryan, C., & Conway, M. (2017). Understanding depressive symptoms and psychosocial stressors on Twitter: a corpus-based study. Journal of Medical Internet Research, 19(2), e48. https://doi.org/10.2196/jmir.6895
- Nam, K. K., Ackerman, M. S., & Adamic, L. A. (2009). Questions in, knowledge in? A study of Naver's question answering community. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 779-788. https://doi.org/10.1145/1518701.1518821
- Orabi, A. H., Buddhitha, P., Orabi, M. H., & Inkpen, D. (2018). Deep learning for depression detection of twitter users. In Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic, 88-97. https://doi.org/10.18653/v1/W18-0609
- Pasupa, K. & Ayutthaya, T. S. N. (2019). Thai sentiment analysis with deep learning techniques: A comparative study based on word embedding, POS-tag, and sentic features. Sustainable Cities and Society, 50, 101615. https://doi.org/10.1016/j.scs.2019.101615
- Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532-1543. https://doi.org/10.3115/v1/D14-1162
- Petterson, J., Smola, A. J., Caetano, T. S., Buntine, W. L., & Narayanamurthy, S. M. (2010). Word features for latent dirichlet allocation. In NIPS, 1921-1929. https://doi.org/10.1.1.942.7045
- Qaiser, S. & Ali, R. (2018). Text mining: use of TF-IDF to examine the relevance of words to documents. International Journal of Computer Applications, 181(1), 25-29. https://doi.org/10.5120/ijca2018917395
- Resnik, P., Armstrong, W., Claudino, L., Nguyen, T., Nguyen, V. A., & Boyd-Graber, J. (2015). Beyond LDA: exploring supervised topic modeling for depression-related language in Twitter. In Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, 99-107. https://doi.org/10.3115/v1/w15-1212
- Resnik, P., Garron, A., & Resnik, R. (2013). Using topic modeling to improve prediction of neuroticism and depression in college students. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 1348-1353. url: https://www.aclweb.org/anthology/D13-1133
- Ruas, T., Ferreira, C. H. P., Grosky, W., de Franca, F. O., & de Medeiros, D. M. R. (2020). Enhanced word embeddings using multi-semantic representation through lexical chains. Information Sciences, 532, 16-32. https://doi.org/10.1016/j.ins.2020.04.048
- Schwartz, H. A., Eichstaedt, J., Kern, M., Park, G., Sap, M., Stillwell, D., Kosinski, M., & Ungar, L. (2014). Towards assessing changes in degree of depression through facebook. In Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, 118-125. https://doi.org/10.3115/v1/w14-3214
- Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019). Detection of depression-related posts in reddit social media forum. IEEE(Institute of Electrical and Electronics Engineers) Access, 7, 44883-44893. https://doi.org/10.1109/ACCESS.2019.2909180
- Trotzek, M., Koitka, S., & Friedrich, C. M. (2018). Early detection of depression based on linguistic metadata augmented classifiers revisited. In International Conference of the Cross-Language Evaluation Forum for European Languages, 191-202. Springer, Cham. https://doi.org/10.1007/978-3-319-98932-7_18
- Tsugawa, S., Kikuchi, Y., Kishino, F., Nakajima, K., Itoh, Y., & Ohsaki, H. (2015). Recognizing depression from twitter activity. In Proceedings of the 33rd annual ACM conference on Human Factors in Computing Systems, 3187-3196. https://doi.org/10.1145/2702123.2702280
- Turney, P. D. & Pantel, P. (2010). From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research, 37, 141-188. https://doi.org/10.1613/jair.2934
- Wang, Z. Y., Li, G., Li, C. Y., & Li, A. (2012). Research on the semantic-based co-word analysis. Scientometrics, 90(3), 855-875. https://doi.org/10.1007/s11192-011-0563-y
- World Health Organization (2020). Available: https://www.who.int/health-topics/depression#tab=tab_1
- Yin, Z. & Shen, Y. (2018). On the dimensionality of word embedding. arXiv preprint arXiv:1812.04224. https://doi.org/10.48550/arXiv.1812.04224
- Yun-tao, Z., Ling, G., & Yong-cheng, W. (2005). An improved TF-IDF approach for text classification. Journal of Zhejiang University-Science A, 6(1), 49-55. https://doi.org/10.1007/BF02842477
- Zhang, L., Huang, X., Liu, T., Li, A., Chen, Z., & Zhu, T. (2014). Using linguistic features to estimate suicide probability of Chinese microblog users. In International Conference on Human Centered Computing, 549-559. Springer, Cham. https://doi.org/10.1007/978-3-319-15554-8_45
- Zhao, J., Zhou, Y., Li, Z., Wang, W., & Chang, K. W. (2018). Learning gender-neutral word embeddings. arXiv preprint arXiv:1809.01496. https://doi.org/10.18653/v1/d18-1521