References
- AbuGazia, M., El Damatty, A., Dai, K., Lu, W. and Ibrahim, A. (2020), "Numerical model for analysis of wind turbines under tornadoes", Eng. Struct., 223, 111157. https://doi.org/10.1016/j.engstruct.2020.111157.
- Ashrafi, A., Hangan H., Romanic, D., Kasab, A. and Ezami, N. (2021), "Experimental investigation of large-scale tornado-like vortices", J. Wind Eng. Ind. Aerod., 208, 104449. https://doi.org/10.1016/j.jweia.2020.104449.
- Bortolotti, P., Bottasso C.L. and Croce, A. (2016), "Combined preliminary-detailed design of wind turbines", Wind Energy Science, 1(1), 71-88. https://doi.org/10.5194/wes-1-71-2016.
- Campagnolo, F. and Biegle, H. (2019), Numerical Study of the Loads Induced by Tornadoes on a 3.5 MW Wind Turbine, Research Report No. 1, Technische Universitat Munchen, Munich, Germany.
- Chang, C.C. (1971), "Tornado wind effects on buildings and structures with laboratory simulation", Third International Conference on Wind Effects on Buildings and Structures, 231-240.
- Church, C.R., Snow, J.T., Baker, G. and Agee, E.M. (1979), "Characteristics of tornado like vortices as a function of swirl ratio: A laboratory investigation", J. Atmos. Sci., 36(9), 1755-1776. https://doi.org/10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2.
- David-Jones, R.P. (1973), "The dependence of core radius on swirl ratio in a tornado simulator", J. Atmos. Sci., 30(7), 1427-1430. https://doi.org/10.1175/15200469(1973)030<1427:TDOCRO>2.0.CO;2.
- Fujita, T. (1981), "Tornadoes and downbursts in the context of generalized planetary scales", J. Atmos. Sci., 38(8), 1511-1534. https://doi.org/10.1175/15200469(1981)038<1511:TADITC>2.0.CO;2.
- Gillmeier, S., Sterling, M., Hemida H. and Baker, C. (2018), "A reflection on analytical tornado-like vortex flow field models", J. Wind Eng. Ind. Aerod., 174 10-27. https://doi.org/10.1016/j.jweia.2017.12.017.
- Haan, F.L., Balaramudu, V.K. and Sarkar, P.P. (2010), "Tornado-induced wind loads on a low-rise building", J. Struct. Eng., 136(1). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000093.
- Hangan, H. (2014), "The wind engineering energy and environment (WindEEE) dome at western university", Wind Eng. JAWE, 39(4), 350-351. https://doi.org/10.5359/jawe.39.350.
- Hangan, H. and Kim, J.D., (2008), "Swirl ratio effects on tornado vortices in relation to the Fujita scale", Wind Struct., 11, 291-302. https://doi.org/10.12989/was.2008.11.4.291.
- Hau, E. (2013), Wind Turbines: Fundamentals, Technologies, Application, Economics. Springer.
- Hu, H., Tian, W. and Ozbay, A. (2014), "An experimental investigation on dynamic wind loads acting on a wind turbine model in atmospheric boundary layer winds", 32nd ASME Wind Energy Symposium, 1-8. https://doi.org/10.2514/6.2014-1221.
- Hu, H., Tian, W. and Ozbay, A. (2019), "A wind tunnel study of wind loads on a model wind turbine in atmospheric boundary layer winds", J. Fluids Struct., 85, 17-26. https://doi.org/10.1016/j.jfluidstructs.2018.12.003.
- IEC 61400-1 (2007) Wind Turbines Part 1: Design Requirements. International Electrotechnical Commission.
- IRENA. (2019), Renewable Capacity Statistics. International Renewable Energy Agency.
- Jischke, M.C. and Light, B.D. (1983), "Laboratory simulation of tornadic wind loads on a rectangular model structure", J. Wind Eng. Ind. Aerod., 13(1-3) 371-382. https://doi.org/10.1016/0167-6105(83)90157-5.
- Kosiba, K. and Wurman, J. (2013), "The three-dimensional structure and evolution of a tornado boundary layer", Weather Forecasting, 28(6) 1552-1561. https://doi.org/10.1175/WAF-D13-00070.1.
- Lewellen, W.S. (1962), "A solution for three-dimensional vortex flows with strong circulation", J. Fluid Mech., 14(3) 420-423. https://doi.org/10.1017/S0022112062001330.
- Mishra, A.R., James D.L. and Letchford, C.W. (2008), "Physical simulation of a single-celled tornado-like vortex, Part B: Wind loading on a cubical model", J. Wind Eng. Ind. Aerod., 96, 1258-1273. https://doi.org/10.1016/j.jweia.2008.02.027.
- Refan, M. and Hangan, H. (2012), "Aerodynamic Performance of a Small Horizontal Axis Wind Turbine", ASME. J. Sol. Energy Eng. 134(2), 021013. https://doi.org/10.1115/1.4005751.
- Refan, M. and Hangan, H. (2018), "Near surface experimental exploration of tornado vortices", J. Wind Eng. Ind. Aerod., 175, 120-135. https://doi.org/10.1016/j.jweia.2018.01.042.
- Refan, M., Hangan, H. and Wurman J. (2014), "Reproducing tornadoes in laboratory using proper scaling", J. Wind Eng. Ind. Aerod., 135, 136-148. https://doi.org/10.1016/j.jweia.2014.10.008.
- Refan, M., Hangan, H., Wurman, J. and Kosiba, K. (2017), "Doppler radar-derived wind field of several tornadoes with application to engineering simulations", Eng. Struct., 148, 509-521. https://doi.org/10.1016/j.engstruct.2017.06.068.
- Roshko, A. (1953), On the Development of Turbulent Wakes from Cortex Streets, Report No. NACA-TN-2913. California Inst. of Tech. United States.
- Sarkar, P. and Razavi, A. (2018), "Tornado-induced wind loads on a low-rise building: Influence of swirl ratio, translation speed and building parameters", Eng. Struct., 167 1-12. https://doi.org/10.1016/j.engstruct.2018.03.020.
- Sarkar, P., Sengupta, A., Haan, F.L. and Balaramudu, V. (2008), "Transient loads on buildings in microburst and tornado winds", J. Wind Eng. Ind. Aerod., 96, 2173-2187. https://doi.org/10.1016/j.jweia.2008.02.050.
- Shirzadeh, K., Hangan, H. Crawford, C. and Tari, P.H. (2020), "Investigating the loads and performance of a model horizontal axis wind turbine under IEC extreme operational conditions", Wind Energy Sci., 6, 477-489. https://doi.org/10.5194/wes-6-477-2021.
- Wind Science and Engineering Center (2004), A Recommendation for an enhanced Fujita scale, The National Weather Service. Texas Tech University.
- Wiser, R. and Bolinger, M. (2019), 2018 Wind Technologies Market Report, U.S DOE Wind Energy Technologies Office. United States.
- Xu, N. and Ishihara, T. (2014), "Analytical formulae for wind turbine tower loading in the parked condition by using quasi-steady analysis", Wind Eng., 38(3). https://doi.org/10.1260/0309-524X.38.3.291.