DOI QR코드

DOI QR Code

Research trends in dental hygiene based on topic modeling and semantic network analysis

  • Yun-Jeong, Kim (Department of Dental Hygiene, Kwangju Women's University) ;
  • Jae-Hee, Roh (Department of Pet Health, Kwangju Women's University )
  • Received : 2022.11.09
  • Accepted : 2022.11.22
  • Published : 2022.12.30

Abstract

Objectives: The purpose of this study was to analyze research trends in dental hygiene using topic modeling and semantic network analysis. Methods: A total of 261 published studies were collected 686 key words from the Research Information Sharing Service (RISS) by 2019-2021. Topic modeling and semantic network analysis were performed using Textom. Results: The most frequently and frequency-inverse document frequently key words were 'dental hygienist', 'oral health', 'elderly', 'periodontal disease', 'dental hygiene'. N-gram of key words show that 'dental hygienist-emotional labor', 'dental hygienist-elderly', 'dental hygienist-job performance', 'oral health-quality of life', 'oral health-periodontal disease' etc. were frequently. Key words with high degree centrality were 'dental hygienist (0.317)', 'oral health (0.239)', 'elderly (0.127)', 'job satisfaction (0.057)', 'dental care (0.049)'. Extracted topics were 5 by topic modeling. Conclusions: Results from the current study could be available to know research trends in dental hygiene and it is necessary to improve more detailed and qualitative analysis in follow-up study.

Keywords

Acknowledgement

This research was supported by Research Funds of Kwangju Women's University in KWUI22-061.

References

  1. www.kci.go.kr. http://www.kci.go.kr/kciportal/main.kci [Internet]. Korea Citation Index[cited 2022 Nov 06]. Available from: https://www.kci.go.kr/kciportal/po/statistics/poStatisticsMain.kci. 
  2. www.kci.go.kr. http://www.kci.go.kr/kciportal/po/search/poSereSear.kci [Internet]. Korea Citation Index[cited 2022 Nov 06]. Available from: https://www.kci.go.kr/kciportal/po/search/poSereSearList.kci. 
  3. Kim YJ. Trend analysis of articles published in the Journal of Korean Society of Dental Hygiene, from 2016 to 2018. J Korean Soc Dent Hyg 2020;20(5):733-41. https://doi.org/10.13065/jksdh.20200067 
  4. Yook DI. Text mining-based analysis for research trends in vocational studies. J Korea Academia-Industrial Soc 2017;18(3):586-99. https://doi.org/10.5762/KAIS.2017.18.3.586 
  5. Choi JE. Keyword network analysis of trends in research on young children's play. KALCI 2019;19(14):605-26. https://doi.org/10.22251/jlcci.2019.19.14.605 
  6. Park HW, Leydesdorff L. Understanding the KrKwic: a computer program for the analysis of Korean text. JKDAS 2004;6(5):1377-87. 
  7. Kang SJ, Jung HY, Lee YS. A semantic network analysis on parents' perception of children' splay space: focusing on playground and kids cafe. Educ Res 2018;38(2):281-304. https://doi.org/10.18023/kjece.2018.38.2.011 
  8. Reardon S. Text-mining offers clues to success. Nature 2014;509(7501):410. https://doi.org/10.1038/509410a 
  9. Lee GS. Semantic network analysis on preschooler safety in the COVID-19 using big data. Korean J Child Educ 2021;30(4):197-213. https://doi.org/10.17643/KJCE.2021.30.4.11 
  10. Lee SS. A content analysis of journal articles using the language network analysis methods. JKOSIM 2014;31(4):49-68. https://doi.org/10.3743/KOSIM.2014.31.4.049 
  11. Hwang SI, Park YW. An analysis of arts management-related studies' trend in Korea using topic modeling and semantic network analysis. JAMP 2019;50:5-31. https://doi.org/10.52564/JAMP.2019.50.5 
  12. Choi JH, Park JK, Kim MY. Analysis of research trends related to diagnosis of ASD through keyword network analysis: focusing on domestic academic journals published from 2011-2020. J Behavior Analysis Support 2021;8(1):115-35. https://doi.org/10.22874/kaba.2021.8.1.115 
  13. Hwang SI, Park JB, Kim MK. An analysis of humanities contents_related studies' trends in Korea focused on topic modeling and semantic network analysis. Humanities Contents 2020;56:123-41. https://doi.org/10.18658/humancon.2020.03.123 
  14. Ahn DJ. Analysis of the adolescent obesity research trend using the text mining in Korea and China[Doctoral dissertation]. Cheongju: Korea National of Education University, 2020. 
  15. YI IS, Na EY. A study on the journal analysis of cognitive field using text mining(2000-2017). J Humanities Social Sci 2016;9(3):415-26. https://doi.org/10.22143/HSS21.9.3.32 
  16. www.kci.go.kr. http://www.kci.go.kr/kciportal/po/search/poArtiSear.kci [Internet]. Korea Citation Index[cited 2022 Nov 06]. Available from: https://www.kci.go.kr/kciportal/po/search/poArtiSearList.kci. 
  17. Jang JH, Won BY, Jang GW, Kim SK, Oh SH, Kim YJ, et al. Trend analysis of research in the Journal of Korean Society Dental Hygiene from 2001 to 2015. J Korean Soc Dent Hyg 2017;17(4):693-704. https://doi.org/10.13065/jksdh.2017.17.04.693 
  18. Kang BW, Ahn SY, Kim SK, Yoo YS, Yoo EM, Lee SM. The research trends of papers in the journal of Korean society of dental hygiene. J Korean Soc Dent Hyg 2010;10(6):991-1000. 
  19. Kim YJ. Comparison of author key words and Medical Subject Heading terms in the Journal of Korean Society of Dental Hygiene from 2001 to 2015. J Korean Soc Dent Hyg 2018;18(6):1047-55. https://doi.org/10.13065/jksdh.20180090 
  20. Kim YJ. Analysis of authors' key words published in the Journal of Korean Society of Dental Hygiene across 3 years (2016 to 2018). J Korean Soc Dent Hyg 2019;19(6):1059-66. https://doi.org/10.13065/jksdh.20190091 
  21. Kim YJ. Trend analysis of articles published in the Journal of Korean Society of Dental Hygiene, from 2016 to 2018. J Korean Soc Dent Hyg 2020;20(5):733-41. https://doi.org/10.13065/jksdh.20200067 
  22. Nahm CH. An illustrative application of topic modeling method to a farmer's diary. Cross Cultural Studies 2016;22(1):89-135. 
  23. Kim JH, Choi WS, Chung MR. Research trends and knowledge structure of Korean Society for Early Childhood Education through an analysis of keyword network. Educ Res 2017;37(3):269-88. https://doi.org/10.18023/kjece.2017.37.3.013 
  24. Bang SW. Analysis of research trends on online Korean language education-using topic modeling and semantic network analysis-. J Int Network Korean Language Culture 2021;18(1):1-30. https://doi.org/10.15652/ink.2021.18.1.001 
  25. Hwang SI, Hwang DR. A study on the research trends in arts management in Korea using topic modeling and semantic network analysis. J Arts Manage Policy 2018;48:5-29. https://doi.org/10.52564/JAMP.2018.47.5 
  26. Lee HR. Use of text network analysis in early childhood education research. JKOAECE 2019;24(1):293-314. https://doi.org/10.20437/KOAECE24-1-12 
  27. Jin MR, Ko HK. Analysis of trends in mathematics education research using text mining. J Korea Soc Math Ed Ser E 2019;33(3):275-94. https://doi.org/10.7468/jksmee.2019.33.3.275 
  28. Moon SE, Hong SH, Kim YJ, Kim SY, Cho HE, Kang HJ, et al. A comparative study of the perceptions of dental hygienists and dentists of nonsurgical periodontal therapy: application of a co-orientation model. J Korean Soc Dent Hyg 2020;20(1):107-16. https://doi.org/10.13065/jksdh.20200011