DOI QR코드

DOI QR Code

충주-괴산일대에서 산출되는 주요 기반암의 골재로서의 물성특징

Physical Properties of Major Bedrocks in Chungju-Goesan Area as Aggregates

  • 유병운 (충남대학교 우주.지질학과) ;
  • 유재형 (충남대학교 우주.지질학과)
  • Byoung-Woon, You (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Jaehyung, Yu (Department of Astronomy, Space Science and Geology, Chungnam National University)
  • 투고 : 2022.12.10
  • 심사 : 2022.12.16
  • 발행 : 2022.12.28

초록

본 연구는 충주-괴산일대에 분포하는 기반암 중 화강암, 규암, 천매암, 편암, 편마암의 골재자원으로서의 활용도를 고찰하였다. 연구지역에 분포하는 화강암류는 쥬라기 흑운모 화강암이 주를 이루고, 규암층은 계명산층과 향산리 돌로마이트 석회암 상부에 분포하는 대향산규암층으로 이루어져 있다. 또한 천매암은 옥천대 황강리층을 구성하는 함력천매암질암이고, 편암은 옥천대 문주리층인 녹니석편암, 편마암은 서창리층 상부에 해당하는 반상변정편마암으로 이루어져 있다. 본 기반암들의 골재품질 평가요소로는 조립률, 흡수율, 단위용적질량, 절대건조밀도, 실적률, 공극률, 마모율, 안정성 등이 고려되었다. 본 기반암들의 골재품질 평가 결과 대부분이 기본 골재품질기준을 만족하는 것으로 나타났으며, 암종별 물성특성 분포범위는 다르게 나타났다. 화강암의 경우, 단위용적질량, 실적률, 공극률, 마모율에서 일부 만족하지 못하는 것으로 나타났으며, 편마암은 마모율에서, 편암은 공극률과 실적률에서 기준치를 벗어났다. 전반적인 골재자원으로서의 품질은 규암, 편마암 및 천매암이 우수한 품질을 보이는 것으로 분석되었다. 골재품질시험은 암석별로 개략적으로 이루어지지만 같은 암석이라도 광물의 형상(morphology)에 다라 달라질수있다. 따라서 골재자원의 품질평가를분석, 활용 할 때 암석-광물학적 연구를 병행한다면 더욱 효율적으로 활용이 가능 할 것이다.

This study examined the granite, quartzite, phyllite, schist, and gneiss as aggregate resources among the original rock distributed in the Chungju-Goesan area. The granite distributed in the study area is mainly composed of Jurassic biotite granite, and the quartzite layer is from the Daehyangsan quartzite Formation distributed on the upper part of the Gyemyeongsan Formation and the Hyangsan-ri dolomitic limestone Formation. In addition, phyllite is pophyrytic phyllite-schist from the Hwanggangri Formation of the Okcheon group, schist is chlorite schist, from the Munjuri Formation of the Okcheon group, and gneiss is porphyroblastic gneiss which is the upper part of the Seochangri Formation. Aggregate quality evaluation factors of these rocks included fineness modulus, absorption, unit weight, absolute dry density, solid content, porosity, resistance to abrasion, and soundness. In the case of granite, it was found to be partially unsatisfactory in terms of unit weight, solid content, porosity, and resistance to abrasion. Gneiss was found to be out of the standard values in resistance to abrasion and schist in porosity and solid content. As for the overall quality of aggregate resources, it was analyzed that quartzite, gneiss, and phyllite showed excellent quality. Aggregate quality tests are performed simply for each rock, but the rock may vary depending on the morphology of the mineral. Therefore, when analyzing and utilizing the quality evaluation of aggregate resources, it will be possible to use them more efficiently if the rock-mineralological research is performed together.

키워드

과제정보

본 논문을 심사해주신 심사위원님들께 감사드린다. 본 연구는 충남대학교 학술 연구비에 의해 지원되었다.

참고문헌

  1. Baek, C.W., Park, C.B., Kim, J.S. and Ruy, D.H. (2005). Properties of Quality & Mortar Application of Crushed Sand According to the Producing Type. Journal of Korea Concrete Institute, v.11, p.443-446.
  2. Baek, C.S., Seo, J.H., Kim, Y.J., Cho, K.H., Kim, K.K. and Lee, J.Y. (2020) A Fundamental Study on the Potential of Alkali-Aggregate Reaction according to KS F 2545 and ASTM C 1260 Test Methods. J. Korean Inst. Resources Recycling, v.29, n.2, p.18-27. DOI : https://doi.org/10.7844/kirr.2020.29.2.18
  3. Cho, S.Y., Yim, G.J., Lee, J.Y. and Ji, S.W. (2021) A Study on Mixed-use Development Cases Using Closed Quarry Site of Overseas; the UK and Australia. Economic and Environmental Geology, v.54, n.5, p.505-513. DOI : http://dx.doi.org/10.9719/EEG.2021.54.5.505
  4. Hong, S.H., Han, S.H. and Yun, KK. (2005) Alkali-Silica Reactivity of Four Type of Rocks. Korean Society of Road Engineers, p.251-254.
  5. Hong, S.S. and Lee, J.Y. (2021) Aggregate of Korea in 2020. Economic and Environmental Geology, v.54, n.5, p.581-594. DOI : http://dx.doi.org/10.9719/EEG.2021.54.5.505
  6. Jeon, S.M. and Kim, H.K. (2021) Basic Properties and Dimension Stability of Ultra Rapid Setting Cement Mortar Containing Low-Quality Recycled Aggregate. J. Rec. Const. Resources, v.9, n.3, p.246-252. DOI : https://doi.org/10.14190/JRCR.2021.9.3.246
  7. Kang, J.H., Lee, D.S., Noh, S.Y., Jeong, J.W. and Koh, S.M. (2017) Geology and constituent rocks of the Chungju-Goesan area in the northwestern part of Ogcheon metamorphic zone, Korea: Considering on the history of igneous activities accompanying formation and evolution processes of the Ogcheon rift basin. Journal of the Geological Society of Korea, v.53, no.1, p.51-77. DOI : http://dx.doi.org/10.14770/jgsk.2017.53.1.51
  8. Kang, J.H., Hayasaka, Y. and Ryoo, C.R. (2012) Tectonic evolution of the Central Ogcheon Belt, Korea, Jour. Petrol. Soc. Korea v.21, n.2, p.129-150. DOI : https://doi.org/10.7854/JPSK.2012.21.2.129
  9. Kim, H.K. and Pyo, S.H. (2018) An Experimental Study on Abrasion Resistance of Ultra High Performance Concrete according to Aggregate Type. Journal of the Korea Concrete Institute, v.30, n.1, p.173-174.
  10. Kim, J.C., Koh, H.J., Lee, S.R., Lee, C.B., Choi, S.J., Park, G.H., Kim, D.H., Hwang, J.H., Song, K.Y., Lee, B.J., Kim, Y.B., Jo, D.R., Choi, H.I., Jeon, H.Y., Kim, B.C., Ki, W.S., Kang, P.J., Jin, M.S., Park, D.H., Choi, B.Y. and Choi, Y.S. (2020) Geological report of the South Korea sheet (1:250,000), KIGAM.
  11. Kim, K.W. and Lee, H.K. (1965) Geological report of the Chungju sheet (1:50,000), Korea. Institute of Energy and Resources, 35p (in Korean with English abstract).
  12. MOTIE(Ministry of Trade, Industry and Energy) (2004) Resource evaluation and quality management of natural aggregates, Report.
  13. MOTIE(Ministry of Trade, Industry and Energy) (2005) Assessment of natural aggregate resources of Korea, Report.
  14. Lee, J.M., Choi, H.K., Hong, J.H. and Park, M.Y. (2021) Suggestion of Aggregate soil decision and Evaluation test method for Improving Concrete Quality and Securing Structure Stability. Journal of the Korea Concrete Institute, v.33, n.2, p.375-376.
  15. Lee, J.S., Seo, J.H., Lee, J.Y., Baek, C.S., Kang, K.W. and Lee, H.S. (2021) Study on Alkali Aggregate Reaction in Crushed Aggregates of Domestically Local Site (Mortar-Bar Method). Journal of the Korea Concrete Institute, v.33, n.2, p.383-384.
  16. Lee, J.Y., Cheong, Y.W., Ji, S.W. and Lee, D.G. (2021) Evaluation of Some Stone Dust and Sludge Generated in the Aggregate Production Process and Research Trends for Its Use. Economic and Environmental Geology, v.54, n.5, p.605-613. DOI : http://dx.doi.org/10.9719/EEG.2021.54.5.605
  17. Lee, C.H. and Kim, J.H. (1972) Geological reprot of the Goesan sheet (1:50,000), Korea. Institute of Energy and Resources, 22p (in Korean with English abstract).
  18. Min, K.W., Kim, J.D. and Im, G.J. (1996) Petrographic properties related to the durability of granite aggregate. Journal of KRMCIA, n.1, v.46, p.40-47.
  19. Min, K.W., Cho, M.S., Kwon, S.T., Kim, I.J., Nagao, K. and Nakamura, E. (1995) K-Ar ages of metamorphic rocks in the Chungju area:Late Proterozoic (675 Ma) metamorphism of the Ogcheon belt. Jour. Petrol. Soc. Korea, v.31, n.4, p.315-327. DOI : https://doi.org/10.7854/JPSK.2012.21.2.129
  20. Min, T.K., Moon, J.K. and Lee, S.I. (2007) Los Angeles Abrasion Test for Estimationg Engineering Index on the Sedimentary Rocks of Kyeongsang Basin. Journal of the Korean Geotechnical Society, v.23, n.11, p.15-26.
  21. MOLIT(Ministry of Land, Infrastructure and Transport) (2021) Aggregate Resources Investigation Report : Chungju-si.
  22. MOLIT(Ministry of Land, Infrastructure and Transport) (2020) Aggregate Resources Investigation Report : Goesan-si.
  23. Murray, H.H. (1991) Overview-clay mineral applications. Applied Clay Science, v.5, n.5-6, p.379-395. DOI : https://doi.org/10.1016/0169-1317(91)90014-Z
  24. Park, C.B., Back, C.W., Park, C.G., Jo, H.T. and Ryu, D.H. (2019) Properties of High Strength Concerte with Limestione Aggregate. Journal of the Korea Concrete Institute, v.31, n.1, p.419-420. https://doi.org/10.4334/JKCI.2019.31.5.419
  25. Park, C.K., Jeong, J.H. and Kim, J.S. (2017) Elastic Modulus of Concrete with Aggregate Type. Journal of the Korea Concrete Institute, v.29, n.1, p.551-552.
  26. Park, Y.Y., Yu, J.Y., Kim, Y.J., Chae, J.S. and Chang, B.U. (2019) Status and geochemical characteristics of the constructional aggregate in Gangwon area. Journal of the Geological Society of Korea, v.55, n.3, p.365-376. DOI : http://dx.doi.org/10.14770/jgsk.2019.55.3.365
  27. Yoon, M.H., Choe, G.C., Lee, T.G. and Kim, G.Y. (2014) Evaluation on Strain Properties of 60 MPa Class High Strength Concrete according to the Coarse Aggregate Type and Elevated Temperature Condition. Journal of the Korea Concrete Institute, v.26, n.3, p.247-254. DOI : http://dx.doi.org/10.4334/JKCI.2014.26.3.247
  28. Yoon, H.S., Hong, S.S., Park, D.W., Lee, B.D. and Kim, J.W. (2002) Economic and Environment Geology,
  29. You, B.W., Lee, J.Y., Lee, D.K. and Cheong, Y.W. (2022) Effect of the Degree of Weathering on the Distribution of Aggregate Particle Size and the Generation of Fine Rock Particles during Crushing of Granite. Economic and Environment Geology, v.55, n.5, p.429-438. DOI : https://doi.org/10.9719/EEG.2022.55.5.429
  30. Yun, Y.H., Choi, J.O., Lee, D.G. and Jung, Y.W. (2015) Fundamental Characteristics of Concrete According to Fineness Modulus and Replacement Ratio of Crushed Sand. J. Rec. Const. Resources, v.3, n.3, p.244-251. DOI : http://dx.doi.org/10.14190/JRCR.2015.3.3.244