DOI QR코드

DOI QR Code

수열 합성법에 의해 제조된 주석-안티몬 황화물계 나노복합체 기반 나트륨이온전지용 음극의 전기화학적 특성

Electrochemical Properties of Tin-Antimony Sulfide Nanocomposites Synthesized by Hydrothermal Method as Anode Materials for Sodium Ion Batteries

  • 박소현 (경상국립대학교 나노.신소재공학부) ;
  • 정수환 (경상국립대학교 나노.신소재공학부) ;
  • 엄수윤 (경상국립대학교 나노.신소재공학부) ;
  • 이상준 (경상국립대학교 나노.신소재공학부) ;
  • 김주형 (경상국립대학교 나노.신소재공학부)
  • So Hyeon, Park (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Su Hwan, Jeong (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Suyoon, Eom (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Sang Jun, Lee (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Joo-Hyung, Kim (School of Materials Science and Engineering, Gyeongsang National University)
  • 투고 : 2022.11.11
  • 심사 : 2022.12.14
  • 발행 : 2022.12.27

초록

Tin-antimony sulfide nanocomposites were prepared via hydrothermal synthesis and a N2 reduction process for use as a negative electrode in a sodium ion battery. The electrochemical energy storage performance of the battery was analyzed according to the tin-antimony composition. The optimized sulfides exhibited superior charge/discharge capacity (770 mAh g-1 at a current density of 100 mA g-1) and stable lifespan characteristics (71.2 % after 200 cycles at a current density of 500 mA g-1). It exhibited a reversible characteristic, continuously participating in the charge-discharge process. The improved electrochemical energy storage performance and cycle stability was attributed to the small particle size, by controlling the composition of the tin-antimony sulfide. By optimizing the tin-antimony ratio during the synthesis process, it did not deviate from the solubility limit. Graphene oxide also acts to suppress volume expansion during reversible electrochemical reaction. Based on these results, tin-antimony sulfide is considered a promising anode material for a sodium ion battery used as a medium-to-large energy storage source.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (NRF-2022R1C1C1011386). This results was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-003).

참고문헌

  1. D. Larcher and J. M. Tarascon, Nat. Chem., 7, 19 (2015). 
  2. N. Yabuuchi, K. Kubota, M. Dahbi and S. Komaba, Chem. Rev., 114, 11636 (2014). 
  3. H. Y. Kang, Y. C. Liu, K. Z. Cao, Y. Zhao, L. F. Jiao, Y. J. Wang and H. T. Yuan, J. Mater. Chem. A, 3, 17899 (2015). 
  4. V. L. Chevrier and G. Ceder, J. Electrochem. Soc., 158, A1011 (2011). 
  5. J.-H. Kim, J. H. Yun and D. K. Kim, Adv. Energy Mater., 8, 1703499 (2018). 
  6. X. Li, Z. Yang, Y. Fu, L. Qiao, D. Li, H. Yue and D. He, ACS Nano, 9, 1858 (2015). 
  7. S. C. Jung, H. J. Kim, Y. J. Kang and Y. K. Han, J. Alloys Compd., 688, 158 (2016). 
  8. J.-H. Kim, Y. H. Jung, J. H. Yun, P. Ragupathy and D. K. Kim, Small, 14, 1702605 (2018). 
  9. X. T. Lu, E. R. Adkins, Y. He, L. Zhong, L. L. Luo, S. X. Mao, C. M. Wang and B. A. Korgel, Chem. Mater., 28, 1236 (2016). 
  10. R. Chen, R. Luo, Y. Huang, F. Wu and L. Li, Adv. Sci., 3, 1600051 (2016). 
  11. F. Li, Y. Y. Qu and M. W. Zhao, J. Mater. Chem. A, 4, 8905 (2016). 
  12. L. Baggetto, J. K. Keum, J. F. Browning and G. M. Veith, Electrochem. Commun., 34, 41 (2013). 
  13. S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata and S. Kuze, Electrochem. Commun., 21, 65 (2012). 
  14. P. R. Kumar, Y. H. Jung, D. K. Kim, RSC Adv., 5, 79845 (2015). 
  15. Z. B. Li, C. G. Lin, G. S. Qu, Q. H. Nie, T. F. Xu and S. X. Dai, J. Am. Ceram. Soc., 97, 793 (2014). 
  16. R. Saroha, J. Heo, X. Li, N. Angulakshmi, Y. Lee, H.-J. Ahn, J.-H. Ahn and J.-H. Kim, J. Alloys Compd., 893, 162272 (2022).