Acknowledgement
이 논문은 2021년도 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2021R1F1A1047952)
References
- Bollerslev T (1986). Generalized autoregressive conditional heteroscedasticity, Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
- Chung S and Hwang SY (2017). A profile Godambe information of power transformations for ARCH time series, Communications in Statistics-Theory and Methods, 46, 6899-6908. https://doi.org/10.1080/03610926.2016.1139133
- Francq C, Lepage G, and Zakoian JM (2011). Two-stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE, Journal of Econmetrics, 165, 246-257. https://doi.org/10.1016/j.jeconom.2011.08.001
- Francq C and Zakoian JM (2013). Optimal predictions of powers of conditionally heteroscedastic processes, Journal of the Royal Statistical Society B, 75, 345-367. https://doi.org/10.1111/j.1467-9868.2012.01045.x
- Godambe VP (1985). The foundation of finite sample estimation in stochastic processes, Biometrika, 72, 419-428. https://doi.org/10.1093/biomet/72.2.419
- Hansen PR and Lunde A (2005). A forecast comparison of volatility models : Does anything beat a GARCH (1, 1)?, Journal of Applied Econometrics, 20, 873-889. https://doi.org/10.1002/jae.800
- Hwang SY and Basawa IV (2004). Stationarity and moment structure for Box-Cox transformed threshold GARCH (1, 1) processes.
- Hwang SY and Basawa IV (2011). Godambe estimating functions and asymptotic optimal inference, Statistics & Probability Letters, 81, 1121-1127. https://doi.org/10.1016/j.spl.2011.03.006
- Tsay RS (2010). Analysis of Financial Time Series (third ed), Wiley, New York.
- Vasudevay R and Kumari JV (2013). On general error distributions, ProbStat Forum, 6, 89-95.
- Yoon JE and Hwang SY (2021). On the threshold innovation in quasi-likelihood for conditionally heteroscedastic time series, Communications in Statistics : Simulation and Computation, 50, 2042-2053. https://doi.org/10.1080/03610918.2019.1593453