DOI QR코드

DOI QR Code

Analysis of Chlorophyll-a and Algal Bloom Indices using Unmanned Aerial Vehicle based Multispectral Images on Nakdong River

무인항공기 기반 다중분광영상을 이용한 낙동강 Chlorophyll-a 및 녹조발생지수 분석

  • 김흥민 ((주)아이렘기술개발 기업부설연구소) ;
  • 최은영 (환경부 낙동강유역환경청 측정분석과) ;
  • 장선웅 ((주)아이렘기술개발)
  • Received : 2022.02.03
  • Accepted : 2022.03.14
  • Published : 2022.03.31

Abstract

Existing algal bloom monitoring is based on field sampling, and there is a limit to understanding the spatial distribution of algal blooms, such as the occurrence and spread of algae, due to local investigations. In this study, algal bloom monitoring was performed using an unmanned aerial vehicle and multispectral sensor, and data on the distribution of algae were provided. For the algal bloom monitoring site, data were acquired from the Mulgeum·Mae-ri site located in the lower part of the Nakdong River, which is the areas with frequent algal bloom. The Chlorophyll-a(Chl-a) value of field-collected samples and the Chl-a estimation formula derived from the correlation between the spectral indices were comparatively analyzed. As a result, among the spectral indices, Maximum Chlorophyll Index (MCI) showed the highest statistical significance(R2=0.91, RMSE=8.1mg/m3). As a result of mapping the distribution of algae by applying MCI to the image of August 05, 2021 with the highest Chl-a concentration, the river area was 1.7km2, the Warning area among the indicators of the algal bloom warning system was 1.03km2(60.56%) and the Algal Bloom area occupied 0.67km2(39.43%). In addition, as a result of calculating the number of occurrence days in the area corresponding to the "Warning" in the images during the study period (July 01, 2021~November 01, 2021), the Chl-a concentration above the "Warning" level was observed in the entire river section from 12 to 19 times. The algal bloom monitoring method proposed in this study can supplement the limitations of the existing algal bloom warning system and can be used to provide information on a point-by-point basis as well as information on a spatial range of the algal bloom warning area.

기존의 녹조 모니터링은 현장 채수에 의한 국지적인 조사로 인해 녹조 발생 및 확산 규모 등에 대한 공간적 분포 파악에 한계가 있다. 이에 본 연구에서는 무인항공기 및 다중분광센서를 이용하여 녹조 모니터링을 수행하고, 녹조 분포 현황 자료를 산출하고자 하였다. 조류 우심구간인 낙동강 하류에 위치한 물금·매리 구간을 대상으로 현장조사 및 다중분광영상 촬영을 수행하였다. 현장 채수 시료의 Chlorophyll-a(Chl-a) 값과 분광지수(Spectral Index)들의 상관관계로 도출한 Chl-a 추정식을 비교 분석하였다. 그 결과 분광지수 중 Maximum Chlorophyll Index(MCI)가 가장 높은 통계적 유의성(R2=0.91, RMSE=8.1mg/m3)을 나타냈다. Chl-a 농도가 가장 높은 2021년 08월 05일 영상에 MCI를 적용하여 녹조 분포 지도를 작성하였고, 이로부터 산출한 수계 면적은 1.7km2이며, 조류경보제 발령 단계 중 경계(Warning) 면적은 1.03km2(60.56%), 대발생(Algal Bloom) 면적은 0.67km2(39.43%)를 나타내었다. 또한 연구기간 동안(2021년 07월 01일~2021년 11월 01일) 취득된 영상 내 "경계" 이상에 해당하는 영역에 대한 발생 일수를 계산한 결과, 하천 전 구간에서 최소 12회에서 최대 19회까지 "경계" 이상의 Chl-a 농도가 관측되었다. 본 연구에서 산출한 다중분광영상의 Chl-a 농도와 녹조발생지수는 녹조에 대한 공간적 분석이 용이하므로 조류경보제와 같은 현장 채수 위주의 지점 단위 자료를 보완할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 2021년 낙동강수계 환경기초조사사업의 '드론 분광영상 활용 낙동강 녹조 모니터링'의 지원으로 수행되었음.

References

  1. Bates, B.C., Kundzewicz, Z.W., Wu, S. and Paluikof, J.P. 2008. Climate change and water. Intergovernmental Panel on Climate Change Secretariat. 70pp.
  2. Binding, C.E., Greenberg, T.A. and Bukata, R.P. 2013. The MERIS maximum chlorophyll index; its merits and limitations for inland water algal bloom monitoring. Journal of Great Lakes Research. 39:100-107.
  3. Byeon, Y.G., Seo, M.J., jin, D.H., Jung, D.S., Woo, J.H., Jeon, W.J. and Han, K.S. 2021. Green algae detection in the middle.downstream of Nakdong river using high-resolution satellite data. Korean Journal of Remote Sensing. 37(3):493-502. https://doi.org/10.7780/KJRS.2021.37.3.10
  4. Cho, H.G. and Lee, K.S. 2014. Comparison between hyperspectral and multispectral images for the classification of coniferous species. Korean Journal of Remote Sensing. 30(1):25-36. https://doi.org/10.7780/KJRS.2014.30.1.3
  5. Choe, E.Y., Jung, K.M., Yoon, J.S., Jang, J.H., Kim M.J. and Lee, H.J. 2021. Application of spectral indices to drone-based multispectral remote sensing for algal bloom monitoring in the river. Korean Journal of Remote Sensing. 27(5):613-623. https://doi.org/10.7780/KJRS.2011.27.5.613
  6. Dall'Olmo, G., Gitelson, A. A. and Rundquist, D. C. 2003. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters. Geophysical Research Letters. 30(18):1938-1941.
  7. Ha, N. T. T., Thao, N. T. P., Koike, K. and Nhuan, M. T. 2017. Selecting the best band ratio to estimate chlorophyll-a concentration in a tropical freshwater lake using sentinel 2A images from a case study of lake Ba Be (Northern Vietnam). ISPRS International Journal of Geo-Information. 6(9):290. https://doi.org/10.3390/ijgi6090290
  8. Jang, S.W., Kim, D.H., Chung, Y.H. and Yoon, H.H. 2015. A study on exploring accumulation zone and composition investigation of floating debris in Nakdong river basin. Journal of the Korean Association of Geographic Information Studies. 18(2):45-58. https://doi.org/10.11108/KAGIS.2015.18.2.045
  9. Kim, E., Nam, S.H., Koo, J.W. and Hwang, T.M. 2021. Hybrid approach utilizing unmanned aerial vehicle and unmanned surface vehicle to assess the map of chlorophyll-a in a stream. Preprints 2021, 2021010368.
  10. Kim, H.M., Jang, S.W. and Yoon, H.J. 2017. Utilization of unmanned aerial vehicle(UAV) image for detection of algal bloom in Nakdong river. Journal of Korea Institute of Electronics Communication Sciences. 12: 457-463.
  11. Kim, S.H., Moon, B.H., Song, B.G. and Park, K.H. 2019. An analysis on the usability of unmanned aerial vehicle image to identify water quality characteristics in agricultural streams. Journal of the Korean Association of Geographic Information Studies. 22(3):10-20. https://doi.org/10.11108/KAGIS.2019.22.3.010
  12. Kim, T.W., Shin, H.S. and Suh, Y.C. 2014. Airborne hyperspectral imagery availability to estimate inland water quality parameter. Korean Journal of Remote Sensing. 30(1): 61-73. https://doi.org/10.7780/KJRS.2014.30.1.6
  13. Lee, K.H. and Lee, S.H. 2012. Monitoring of floating green algae using ocean color satellite remote sensing. Journal of the Korean Association of Geographic Information Studies. 15(3):137-147. https://doi.org/10.11108/KAGIS.2012.15.3.137
  14. Ministry of Environment. 2021. 2020 Annual report of algae(green tide) occurrence and response. pp.40-46.
  15. Mishra, S. and Mishra, D. R. 2012. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sensing of Environment. 117:394-406. https://doi.org/10.1016/j.rse.2011.10.016
  16. Park, H.G. 2014. The occurrences and reduction measures of algal bloom. Bulletin of Korea Environmental Preservation Association. pp.17-21.
  17. Park, J.I., Choi, S.Y. and Park, M.H. 2017. A study on green algae monitoring in watershed using fixed wing UAV. Journal of korean Institute of Intelligent System. 27(2):164-169. https://doi.org/10.5391/JKIIS.2017.27.2.164
  18. Park, Y.J., Jang H.J., Kim, Y.S., Baik, K.H. and Lee, H.S. 2014. A research on the applicability of water quality analysis using the hyperspectral sensor. Journal of the Korean Society for Environmental Analysis. 17(3):113-125.
  19. Srivastava, A., Ahn, C. Y., Asthana, R. K., Lee, H. G. and Oh, H. M. 2015. Status, alert system, and prediction of cyanobacterial bloom in South Korea. BioMed research international. 2015:584-696.
  20. Su, T. C. and Chou, H. T. 2015. Application of multispectral sensors carried on unmanned aerial vehicle(UAV) to trophic state mapping of small reservoirs: A case study of Tain-Pu reservoir in Kinmen. Taiwan. Remote Sensing. 7(8):10078-10097. https://doi.org/10.3390/rs70810078
  21. Thackeray, S. J., Jones, I. D. and Maberly, S. C. 2008. Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climatic change. Journal of Ecology. 96(3):523-535. https://doi.org/10.1111/j.1365-2745.2008.01355.x