Acknowledgement
The authors are thankful to the anonymous referees for their valuable suggestions and comments that significantly improved the presentation and correctness of this paper.
References
- A. Najati, M. M. Saem and P. Gavruta, Frames and operators in Hilbert C*-modules, Operators and Matrices 10 (1) (2016), 73-81.
- D. Han, W. Jing and R. Mohapatra, Perturbation of frames and Riesz bases in Hilbert C*-modules, Linear Algebra Appl. 431 (2009), 746-759. https://doi.org/10.1016/j.laa.2009.03.025
- D. Han, W. Jing, D. Larson and R. Mohapatra, Riesz bases and their dual modular frames in Hilbert C*-modules, J. Math Anal. Appl. 343 (2008), 246-256. https://doi.org/10.1016/j.jmaa.2008.01.013
- E. J. Candes and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities, Commun. Pure Appl. Math. 57 (2) (2004), 219-266. https://doi.org/10.1002/cpa.10116
- H. Bolcskei, F. Hlawatsch and H. G. Feichtinger, Frame-theoretic analysis of oversampled filter banks, IEEE Trans. Signal Process. 46 (12) (1998), 3256-3268. https://doi.org/10.1109/78.735301
- I. Daubechies, A. Grossmann and Y. Meyer, Painless non orthogonal expansions, J. Math.Phys. 27 (1986), 1271-1283. https://doi.org/10.1063/1.527388
- I. Kaplansky, Algebra of type I, Ann. Math. 56 (1952), 460-472. https://doi.org/10.2307/1969654
- L. Arambaic, On frames for countably generated Hilbert C*-modules, Proc. Amer. Math Soc. 135 (2007), 469-478. https://doi.org/10.1090/S0002-9939-06-08498-X
- L. Gavruta, Frames for operators, Appl. Comput. Harmon. Anal. 32 (2012), 139-144. https://doi.org/10.1016/j.acha.2011.07.006
- M. Frank and D. R. Larson, Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory 48 (2002), 273-314.
- M. Nouri, A. Rahimi and Sh. Najafzadeh, Controlled K-frames in Hilbert Spaces, J. of Ramanujan Society of Math. and Math. Sc. 4 (2) (2015), 39-50.
- M. R. Kouchi and A. Rahimi, On controlled frames in Hilbert C*-modules, Int. J. Walvelets Multi. Inf. Process. 15 (4) (2017), 1750038. https://doi.org/10.1142/S0219691317500382
- P. Balazs, J-P. Antoine and A. Grybos, Weighted and Controlled Frames, Int. J. Walvelets Multi. Inf. Process. 8 (1) (2010), 109-132. https://doi.org/10.1142/S0219691310003377
- P. J. S. G. Ferreira, Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction, In: Signals Processing for Multimedia J. S. Byrnes(Ed.)(1999),35-54.
- R. J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Math.Soc. 72 (1952), 341-366. https://doi.org/10.1090/S0002-9947-1952-0047179-6
- T. Strohmer and R. Jr. Heath, Grassmanian frames with applications to coding and communications, Appl. Comput. Harmon. Anal. 14 (2003), 257-275. https://doi.org/10.1016/S1063-5203(03)00023-X
- W. Jing, Frames in Hilbert C*-modules, Ph.D. Thesis, University of Central Frorida, (2006).
- W. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468. https://doi.org/10.1090/S0002-9947-1973-0355613-0
- X. Fang, J. Yu and H. Yao, Solutions to operator equations on Hilbert C-modules, Linear Alg. Appl. 431 (11) (2009), 2142-2153. https://doi.org/10.1016/j.laa.2009.07.009
- Y. C. Eldar and T. Werther, General framework for consistent sampling in Hilbert spaces, Int. J. Walvelets Multi. Inf. Process. 3 (3) (2005), 347-359. https://doi.org/10.1142/S0219691305000890
- Y. C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier. Anal. Appl. 9 (1) (2003), 77-96. https://doi.org/10.1007/s00041-003-0004-2