DOI QR코드

DOI QR Code

R-NOTION OF CONJUGACY IN PARTIAL TRANSFORMATION SEMIGROUP

  • 투고 : 2021.10.24
  • 심사 : 2022.02.22
  • 발행 : 2022.03.30

초록

In this paper, we present a new definition of conjugacy that can be applied to an arbitrary semigroup and it does not reduce to the universal relation in semigroups with a zero. We compare the new notion of conjugacy with existing notions, characterize the conjugacy in subsemigroups of partial transformations through digraphs and restrictive partial homomorphisms.

키워드

참고문헌

  1. F. Otto, Conjugacy in monoids with a special Church-Rosser presentation is decidable, Semigroup Forum 29 (1984), 223-240. https://doi.org/10.1007/BF02573327
  2. G. Kudryavtseva and V. Mazorchuk, On conjugation in some transformation and Brauer-type semigroups, Publ. Math. Debrecen 70 (2007), 19-43. https://doi.org/10.5486/PMD.2006.3354
  3. G. Kudryavtseva and V. Mazorchuk, On three approaches to conjugacy in semigroups, Semigroup Forum 78 (2009), 14-20. https://doi.org/10.1007/s00233-008-9047-7
  4. G. Lallement, Semigroups and Combinatorial Applications (John Wiley and Sons, New York, 1979).
  5. J. Araujo, M. Kinyon, J. Konieczny and A. Malheiro, Four notions of conjugacy for abstract semigroups, to appear in Proc. Roy. Soc. Edinburgh Sect. A, preprint (2015), arXiv:1503.00915v2.
  6. J. Araujo, J. Konieczny and A. Malheiro, Conjugation in semigroups, J. Algebra 403 (2014), 93-134. https://doi.org/10.1016/j.jalgebra.2013.12.025
  7. J. Koneicny, A new definition of conjugacy for semigroups, J. Algebra and Appl. 17, 1850032(2018)[20 pages]. https://doi.org/10.1142/S0219498818500329
  8. J. M. Howie, Fundamentals of Semigroup Theory (Oxford University Press, New York, 1995).
  9. T. Jech, Set Theory, Third Edition, Springer-Verlag, New York, 2006.