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LIFTINGS OF ABSOLUTELY SUMMING OPERATORS ON Lλ1−
SPACES

JeongHeung Kang

Abstract. In this article, we prove that an absolutely summing operator on Lλ1
spaces has a lifting under the conditions that a target Banach space is a quotient of
reflexive Banach subspaces.

1. Introduction

In this article, we prove some variation of the lifting of operators on Lλ1−spaces
that was given by Lindenstrauss. In ( [10]), Lindenstrauss proved a generalization of
the lifting of operators on Lλ1−space that was used an idea of weak ∗ −compactness
in its second dual and the abundance of finite rank operators to verify the linearity of
certain map by defining a composition with a nonlinear function (see [4, pp.1726]).

From this, main question arise under what conditions does there exist a lifting of an
absolutely summing operator T if the restriction of T to all subspaces have lifting of
operators. That is, if X = ∪j∈ΛXj and T : X → Y is an absolutely summing operator

such that for each j ∈ Λ, T |Xj
is liftable, then can we say that T has a lifting T̃ on

whole space X? We will give a partial answer for an absolutely summing operator T
from Lλ1−spaces into a Banach space with the quotient of a reflexive Banach subspace.

We begin with summary of well known results that are related with the lifting of
bounded linear operators between Banach spaces. The basic question of the lifting
property of a Banach space is given as following : “Suppose that X, Y , and Z are
Banach spaces and π is a surjective linear map from Z onto Y which maps the closed
unit ball in Z onto the closed unit ball in Y and that T is a bounded linear operator
on X into Y . When does there exist a bounded linear operator T̃ : X → Z such that
‖T̃‖ = ‖T‖ and such that the following diagram commutes with π ◦ T̃ = T?”

X
T−→ Y

T̃ ↓ ↗ π

Z

(1.1)
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From the above fundamental question and the diagram (1.1), we can give the
definition of the lifting property for Banach space.

definition 1.1. We say that a Banach space X has the lifting property if for a
surjective operator π from a Banach space Z onto Y and for every T ∈ B(X, Y ), there
is a T̃ ∈ B(X,Z) such that T = π ◦ T̃ .

For this question of the lifting property, Grothendieck [3], Pelczýnski [14] and
Köthe [7] characterize the spaces `1 up to an isomorphism. We now state the well
known fact that `1 space has the lifting property.

Theorem 1.2. For a Banach space `1, let Y and Z be Banach spaces such that
there is a linear map π from Z onto Y . Then for every T ∈ B(`1, Y ), there exists a
T̃ ∈ B(`1, Z) for which π ◦ T̃ = T . Moreover, if π is a quotient map, then for every
ε > 0, T̃ may be chosen so that ‖T̃‖ ≤ (1 + ε)‖T‖.

The property of `1 stated in Theorem 1.2 characterizes the space `1 of separable
cases. Also the spaces having the lifting property have been characterized in the
nonseparable case. In [7], Köthe extended Theorem 1.2 to the nonseparable `1(Γ)
space, for given nonseparable index set Γ. Moreover he gave the converse of Theorem
1.2 for the `1 space.

Theorem 1.3. [7] For a Banach X, X has the lifting property if and only if X is
isomorphic to `1(Γ), for some index set Γ.

Also we need to introduce an important definition that goes to the work of our
main question for this lifting.

definition 1.4. Let X and Y be Banach spaces. A bounded linear operator
T : X → Y is said to be absolutely (1-)summing if there is a constant K > 0 such
that for all finite choice of (xi)

n
i=1 in X,

(
n∑
i=1

‖Txi‖) ≤ K sup{(
n∑
i=1

|x∗(xi)|) : x∗ ∈ BX∗}.(1.2)

The least such constant K > 0 is denoted by π1(T ) and is called the absolutely
summing norm of T . Moreover if T : X → Y is an absolutely summing operator,
then T is bounded and ‖T‖ ≤ π1(T ) since, for each x ∈ X

‖T (x)‖ ≤ π1(T ) sup{|x∗(x)| : x∗ ∈ BX∗} = π1(T )‖x‖.(1.3)

The following theorem gives some equivalent descriptions of absolutely 1-summing
operators in [2].

Theorem 1.5. [2] Any one of the following statements about a bounded linear
operator implies all others.
1) T is an absolutely summing operator.
2) T maps unconditionally convergent series in X into absolutely convergent series in
Y .
3) There exists a constant K > 0 such that for any finite elements x1, x2, · · · , xn ∈ X,
the following inequality obtains;

n∑
i=1

‖Txi‖ ≤ K sup{
n∑
i=1

| < xi, x
∗ > | : x∗ ∈ BX∗}(1.4)
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2. Main results

The main purpose of this article is to find some conditions under which bounded
linear operators on Banach spaces have lifting of operators. It is well known fact that
each bounded linear operator on `1 has the lifting of operator in Theorem 1.2. So our
major questions are based on theorem 1.2, that is which bounded linear operator on
Banach space X into a Banach space Y can have a lifting of operator whether it may
preserve the norm or not. In this direction of research, we knew that by imposing
more conditions, we can find a lifting on some Banach space and on L1(µ). Here we
can give a theorem that any absolutely summing operator on the Banach space X
with a unconditional basis can have a lifting but resulting lifting of operator does not
norm preserving in [6].

Theorem 2.1. [6] Let X be a Banach space with an unconditional basis (ei)i∈Γ.
For any Banach spaces Y and Z, let T : X → Y be an absolutely 1-summing operator.
Then for any surjective linear map π : Z → Y , there is a lifting operator T̃ : X → Z
such that π ◦ T̃ = T , ‖T̃‖ ≤ λπ1(T ) and the following diagram commutes;

X
T−→ Y

T̃ ↓ ↗ π

Z

(2.1)

Now we introduce the Lp-spaces which provides a more general framework for our
results. It mainly involved local results to stress the fact that they depend only on
the finite dimensional structure of the Banach space.

definition 2.2. Let λ ≥ 1 and 1 ≤ p ≤ ∞. A Banach space X is said to be an
Lλp-space if there exists a directed net of finite dimensional subspaces (Xj)j∈Λ such

that for all j ∈ Λ, the Banach-Mazur distances d(Xj, `
dimXj
p ) ≤ λ and X = ∪j∈ΛXj.

Simply the space X is called an Lp-space if it is an Lλp -space for some λ ≥ 1. We

know that L∞(µ) and C(K)-spaces are Lλ∞-spaces and Lp(µ) are Lp−space.

In [10], Lindenstrauss proved the existence of the lifting operator on L1 by condi-
tioning the kernel of quotient map by a complemented subspace in its second dual as
following. Refer to the proof of the theorem in [4].

Theorem 2.3. ( [10] and [4, pp.1726]) Let Y and Z be Banach spaces such that
there is a surjective operator π : Z → Y . Suppose that kernel(π) is a complemented
subspace in its second dual. Let X be any L1−space. Then every bounded linear
operator T : X → Y has a lifting operator T̃ : X → Z such that π ◦ T̃ = T .

Here we can have a question for which kind of linear operator T does the lifting
exist if we are giving the other conditions? In Theorem 2.3, if the K = kernel(π) is
complemented in its second dual, this implies that the unit ball BK is weak∗ compact
in K∗∗. From this, if kernel(π) is reflexive subspace of Y , we can give same argument
for weak compactness of unit ball. Now we can give an answer for this question about
a lifting operator by changing the conditions of absolutely summing operators instead
of K = kernel(π) having been complemented in its second dual.
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Lemma 2.4. Let X and Y be Banach spaces and let (Xj)j∈Λ be a net of subspaces
of X directed by inclusion such that X = ∪j∈ΛXj. Then if T : X → Y is an absolutely
summing operator, then for any j ∈ Λ, T |Xj

is absolutely summing on Xj where T |Xj

is a restriction of T to Xj.

Proof. Assume that T : X → Y is an absolutely summing operator and X =
∪j∈ΛXj. Then for any finite elements x1, x2, · · · , xn ∈ Xj,

n∑
i=1

‖T |Xj
(xi)‖ ≤

n∑
i=1

‖T (xi)‖

≤ π1(T ) sup{
n∑
i=1

|x∗(xi)| : x∗ ∈ BX∗}.(2.2)

Then we can say that T |Xi
is absolutely summing and π1(T |Xj

) ≤ π1(T ) for all j ∈ Λ.
This proves the lemma.

Let X be an Lλ1−space and T : X → Y be absolutely summing. By the definition
of Lλ1−space, we can find a directed net of finite dimensional subspaces (Xj)j∈Λ such

that for all j ∈ Λ, the Banach-Mazur distances d(`
dimXj

1 , Xj) ≤ λ and X = ∪j∈λXj.
Then from Lemma 2.4, we can have for all j ∈ Λ, T |Xj

is absolutely summing and
π1(T |Xj) ≤ π1(T ).

Lemma 2.5. Let X be an L1-space such that (Xj)j∈Λ is a net of subspaces of X di-

rected by inclusion andX = ∪j∈ΛXj with the Banach-Mazur distances d(`
dimXj

1 , Xj) ≤
λ and let Y be a Banach space. Then if T : X → Y is a bounded linear operator
such that T |Xj

are absolutely summing operators for all j ∈ Λ, then T is absolutely
summing and π1(T ) = supj∈Λ π1(T |Xj

) where T |Xj
is a restriction of T to Xj.

Proof. Assume that for all j ∈ Λ, T |Xj
are absolutely summing operators and let

C = supj∈Λ π1(T |Xj
) <∞.

Let x1, x2, · · · , xn be finite elements of ∪j∈ΛXj which is dense in X. Since (Xj) is
directed by inclusion, {x1, x2, · · · , xn} must be contained in Xj for some j ∈ Λ. Then

n∑
i=1

‖T (xi)‖ =
n∑
i=1

‖T |Xj
(xi)‖

≤ π1(T |Xj
) sup{

n∑
i=1

|x∗(xi)| : x∗ ∈ BX∗}

≤ C sup{
n∑
i=1

|x∗(xi)| : x∗ ∈ BX∗}.(2.3)

Since ∪j∈ΛXj is dense in X, T can be extended continuously on whole space X =
∪j∈ΛXj. Hence (2.3) is also true for any finite elements x1, x2, · · · , xn ∈ X. This im-
plies T is an absolutely summing operator on X and π1(T ) ≤ supj∈Λ π1(T |Xj

). On the
other hand, since for each j ∈ Λ, π1(T |Xj

) ≤ π1(T ), we have π1(T ) ≤ supj∈Λ π1(T |Xj
).

Hence we have supj∈Λ π1(T |Xj
) = π1(T ). This proves the lemma.

Theorem 2.6. Let X, Y and Z be Banach spaces. Let T : X → Y be an absolutely
summing operator and q : Z → Y be a surjective linear map from Z onto Y with
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norm 1. Then if T̃ : X → Z is a lifting operator of T such that q ◦ T̃ = T , then T̃ is
also an absolutely summing operator with π1(T̃ ) ≤ (1 + ε)π1(T ), for ε > 0.

Proof. Assume that T : X → Y is an absolutely summing operator with 1-summing
norm π1(T ) <∞. Then for any x1, x2, · · · , xn ∈ X, we have

(
n∑
i=1

‖T (xi)‖) ≤ π1(T ) sup{(
n∑
i=1

|x∗(xi)|) : x∗ ∈ BX∗}.(2.4)

Since q : Z → Y is a surjective map, for each xi ∈ X we can choose zi ∈ Z such that
q(zi) = T (xi) and ‖zi‖ ≤ (1 + ε)‖Txi‖, for ε > 0. Then since T̃ is a lifting of T and
q ◦ T̃ = T , we can have T̃ (xi) = zi for all i = 1, 2, · · · , n. Therefore for ε > 0, we can
see

(
n∑
i=1

‖T̃ (xi)‖) = (
n∑
i=1

‖zi‖), (‖zi‖ ≤ (1 + ε)‖Txi‖)

≤ (1 + ε)(
n∑
i=1

‖Txi‖), (T is absolutely summing)

≤ (1 + ε)π1(T ) sup{(
n∑
i=1

|x∗(xi)|) : x∗ ∈ BX∗}.(2.5)

Hence T̃ : X → Z is an absolutely summing operator with 1−summing norm π1(T̃ ) ≤
(1 + ε)π1(T ). This proves the theorem.

Now by using idea of Lindenstrauss’s proof in [10] and in [4], we can prove our
main result for the variation of Lindenstrauss theorem by changing a bounded linear
operator into an absolutely summing operator and replacing the quotient map q :
Y → Y/Z where Z is a reflexive subspace of Y .

Theorem 2.7. Let X be an Lλ1−space and Y be any Banach spaces such that Z
is a reflexive subspace of Y . Assume that T : X → Y/Z is an absolutely summing
operator and q : Y → Y/Z is a quotient map from Y onto Y/Z. Then there exists
an absolutely summing operator T̃ : X → Y that is a lifting operator of T such that
q ◦ T̃ = T with π1(T̃ ) ≤ (2 + λ)(1 + ε)π1(T ), for ε > 0.

Proof. Let X be an Lλ1−space. Then X = ∪j∈ΛXj where Xj is a finite dimensional

subspace of X and for all j ∈ Λ, the Banach-Mazur distances d(Xj, `
dim(Xj)
1 ) ≤ λ.

Let T |Xj
= Tj be the restriction of T on Xj, for each j ∈ Λ. Then by Lemma

2.4, for all j ∈ Λ, Tj is an absolutely summing operator on Xj with summing norm
π1(Tj) ≤ π1(T ) .

By the definition of Lλ1−space, let Sj : `
dim(Xj)
1 → Xj be an isomorphism such

that ‖Sj‖‖S−1
j ‖ ≤ λ with ‖Sj‖ = 1 and ‖S−1

j ‖ ≤ λ. Then we can have the following
diagram.

`
dim(Xj)
1

Sj

� Xj
Tj−→ Y/Z

↘ ↓ ↗ q

Y

(2.6)
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where Tj : Xj → Y/Z is an absolutely summing operator and q : Y → Y/Z is a
quotient map.

Define Rj = Tj ◦ Sj for each j ∈ Λ. Then by the ideal properties of absolutely

summing operators, each Rj is also an absolutely summing operator. Since `
dim(Xj)
1

has the lifting property, we can find a lifting R̃j of Rj such that q ◦ R̃j = Rj for all

j ∈ Λ. Then we have q ◦ R̃j = Rj = Tj ◦ Sj and by Theorem 2.6,

π1(R̃j) ≤ (1 + ε)π1(Rj)

≤ (1 + ε)π1(Tj)‖Sj‖
= (1 + ε)π1(Tj).(2.7)

Now define T̃j = R̃j ◦ S−1
j as a lifting of Tj. Then we have T̃j : Xj → Y and

π1(T̃j) = π1(R̃ ◦ S−1
j )

≤ π1(R̃)‖S−1‖, (∵ ‖S−1‖) ≤ λ)

≤ (1 + ε)λπ1(Tj)

≤ (1 + ε)λπ1(T ).(2.8)

Then for all j ∈ Λ, T̃j : Xj → Y are absolutely summing operators with π1(T̃j) ≤
(1 + ε)λπ1(T ).

Now we find a lifting T̃ of T such that q ◦ T̃ = T . From the definition of a quotient
map q, for each x ∈ X, let φ : X → Y be a map defined by φ(x) = y such that

i) q(y) = T (x),
ii) ‖y‖ ≤ (1 + ε)‖T (x)‖ ≤ (1 + ε)π1(T )‖x‖, by open mapping theorem.
iii) φ(kx) = kφ(x), for all x ∈ X, k ∈ R.

For j ∈ Λ, define ψj by

ψj(x) = T̃j(x)− φ(x) if x ∈ Xj

= 0 otherwise.(2.9)

Then

q ◦ ψj(x) = q ◦ (T̃j(x)− φ(x))

= q ◦ T̃j(x)− q ◦ φ(x)

= Tj(x)− q(y) (where y = φ(x))

= Tj(x)− T (x) if x ∈ Xj

= 0.(2.10)

Hence this implies an element is T̃j(x)− φ(x) ∈ Z and moreover

‖T̃j(x)− φ(x)‖ ≤ ‖T̃j‖‖x‖+ φ(x)

≤ (1 + ε)λπ1(T )‖x‖+ (1 + ε)π1(T )‖x‖
= (1 + ε)(1 + λ)π1(T )‖x‖.(2.11)
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Let Kx = (1 + ε)(1 + λ)π1(T )‖x‖. Then ψj(x) ∈ Kx ·BZ where BZ is the unit ball of
Z. Now consider the following product space∏

x∈X

Kx ·BZ(2.12)

Since Z is a reflexive Banach subspace of Y , BZ is compact for the weak topology.
Hence by the Tychonoff’s theorem

∏
x∈X Kx · BZ is compact for the weak topology.

Then (ψj)j∈Λ has a convergent subnet. Let (ψi) be a such convergent subnet of (ψj)j∈Λ

in the topology of pointwise convergent on X and taking the weak topology on Y .
Let Ψ be the limit point of (ψi). Since ∪j∈ΛXj is dense in X and the net (Xj)j∈Λ is
directed by inclusion. Then if for every x1, x2 ∈ Xi0 for some i0, then for the inclusion
Xi ⊃ Xi0 , we have

ψi(x1 + x2)− ψi(x1)− ψi(x2) = T̃i(x1 + x2)− φ(x1 + x2)−
T̃i(x1) + φ(x1)− T̃i(x2) + φ(x2)

= −φ(x1 + x2) + φ(x1) + φ(x2) by linearity of T̃i.

(2.13)

Hence in the weak limit, we can have Ψ(x1 + x2) − Ψ(x1) − Ψ(x2) = −φ(x1 + x2) +
φ(x1) + φ(x2).

Finally, if we define T̃ (x) = φ(x) + Ψ(x), then T̃ is additive. On the other hand,
we can show that for each scalar k ∈ R, T̃ (kx) = kT̃ (x) as same as for additivity.
This proves the T̃ : X → Y is a linear map. For the boundedness of T̃ , we can see

‖T̃ (x)‖ ≤ ‖φ(x)‖+ ‖Ψ(x)‖
≤ (1 + ε)π1(T )‖|x‖+Kx (Kx = (1 + ε)(1 + λ)π1(T )‖x‖)
= ((1 + ε)(2 + λ))π1(T )‖x‖
= M · ‖x‖ where M = ((1 + ε)(2 + λ))π1(T ).(2.14)

Hence T̃ is a bounded linear operator from X into Y . Then by Theorem 2.6, T̃ : X →
Y is an absolutely summing operator and since q : Y → Y/Z is a quotient map,

π1(T̃ ) ≤ (1 + ε)(2 + λ) sup
j∈Λ

(Tj)

= (1 + ε)(2 + λ)π1(T ).(2.15)

Again we can easily see that q ◦ T̃ = T by the density of ∪j∈ΛXj and a lifting T̃j on
Xj. This proves the theorem.
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