COEFFICIENT BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH DZIOK-SRIVASTAVA OPERATOR

Mohammad Mehdi Shabani and Saeed Hashemi Sababe*

ABSTRACT. In this article, we represent and examine a new subclass of holomorphic and bi-univalent functions defined in the open unit disk $\mathfrak U$, which is associated with the Dziok-Srivastava operator. Additionally, we get upper bound estimates on the Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ of functions in the new class and improve some recent studies.

1. Introduction

Let \mathcal{A} be a family of functions of the form

$$f(z) = z + \sum_{j=2}^{\infty} a_j z^j, \tag{1.1}$$

which are holomorphic in the open unit disk $\mathfrak{U} = \{z \in \mathbb{C} : |z| < 1\}$. Also, we let \mathcal{S} to denote the class of functions $\mathfrak{f} \in \mathcal{A}$ which are univalent in \mathfrak{U} .

The Koebe one-quarter theorem [4] ensures that the image of \mathfrak{U} under every univalent function $\mathfrak{f} \in \mathcal{S}$ contains a disk of radius $\frac{1}{4}$. So every function $\mathfrak{f} \in \mathcal{S}$ has an inverse \mathfrak{f}^{-1} , which is defined by

$$f^{-1}(f(z)) = z \quad z \in \mathfrak{U},$$

and

$$f(f^{-1}(w)) = w$$
 for $|w| < r_0(f)$ such that $r_0(f) \ge \frac{1}{4}$,

where

$$\mathfrak{f}^{-1}(w) = w - a_2^2 w + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$

A function $\mathfrak{f} \in \mathcal{A}$ is said to be bi-univalent in \mathfrak{U} if both \mathfrak{f} and \mathfrak{f}^{-1} are univalent in \mathfrak{U} . Let Σ denote the class of bi-univalent functions in \mathfrak{U} given by (1.1).

Lewin [10] enquired the class Σ of bi-univalent functions and established that $|a_2| < 1.51$ for the functions belonging to Σ . Afterward, Brannan and Clunie [3] conjectured that $|a_2| \leq \sqrt{2}$. Kedzierawski [9] proved this conjecture for a special case when the function \mathfrak{f} and \mathfrak{f}^{-1} are starlike functions. Tan [15] obtained the bound for $|a_2|$ namely

Received November 17, 2021. Revised January 22, 2022. Accepted January 24, 2022. 2010 Mathematics Subject Classification: 30C45, 30C50.

Key words and phrases: Dziok-Srivastava operator, Bi-univalent functions, Coefficient estimates. * Corresponding Author.

© The Kangwon-Kyungki Mathematical Society, 2022.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

 $|a_2| \leq 1.485$ which is the best-known estimate for functions in the class Σ . Recently, their relevance to research the bi-univalent functions class Σ (see [7, 8, 11–13, 16, 17]) and get non-sharp bounds on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$. The coefficient estimate problem i.e. bound of $|a_j|$ ($j \in \mathbb{N} - \{1, 2\}$) for each $\mathfrak{f} \in \Sigma$ given by [1] is still an open problem.

The Hadamard product of two analytic functions

$$\mathfrak{f}(z) = z + \sum_{j=2}^{\infty} a_j z^j$$
 and $\mathfrak{h}(z) = z + \sum_{j=2}^{\infty} b_j z^j$,

is defined as

$$(\mathfrak{f} * \mathfrak{h})(z) = (\mathfrak{h} * \mathfrak{f})(z) = z + \sum_{j=2}^{\infty} b_j a_j z^j.$$

For the complex parameters \mathfrak{a} , \mathfrak{b} and \mathfrak{c} with $\mathfrak{c} \neq 0, -1, -2, -3, ...$, the Gaussian hypergeometric function ${}_{2}\mathcal{F}_{1}(\mathfrak{a}, \mathfrak{b}, \mathfrak{c}; z)$ is defined as

$${}_2\mathcal{F}_1(\mathfrak{a},\mathfrak{b},\mathfrak{c};z) = \sum_{j=0}^{\infty} \frac{(\mathfrak{a})_j(\mathfrak{b})_j}{(\mathfrak{c})_j} \frac{z^j}{j!} = 1 + \sum_{j=2}^{\infty} \frac{(\mathfrak{a})_{j-1}(\mathfrak{b})_{j-1}}{(\mathfrak{c})_{j-1}} \frac{z^{j-1}}{(j-1)!} \quad z \in \mathfrak{U},$$

where $(\tau)_i$ is the Pochhammer symbol (or the shifted factorial) defined as follows:

$$(\varkappa)_j = \frac{\Gamma(\varkappa + j)}{\Gamma(\varkappa)} = \begin{cases} 1 & j = 0\\ \varkappa(\varkappa + 1)(\varkappa + 2)...(\varkappa + j - 1) & j = 1, 2, 3, \dots \end{cases}$$

the generalized hypergeometric function ${}_{\mathfrak{q}}\mathcal{F}_{\mathfrak{s}}(\mathfrak{a},\mathfrak{b},\mathfrak{c};z), \ (\mathfrak{q} \leq \mathfrak{s}+1,z \in \mathfrak{U})$ is defined by the following infinite series:

$$\mathfrak{g}_{\mathfrak{g}}\mathcal{F}_{\mathfrak{s}}(\mathfrak{a}_{1},...,\mathfrak{a}_{\mathfrak{q}};\mathfrak{b}_{1},...,\mathfrak{b}_{\mathfrak{s}};z) = \sum_{j=0}^{\infty} \frac{(\mathfrak{a}_{1})_{j}...(\mathfrak{a}_{\mathfrak{q}})_{j}}{(\mathfrak{b}_{1})_{j}...(\mathfrak{b}_{\mathfrak{s}})_{j}} \frac{z^{j}}{j!}$$

$$= 1 + \sum_{j=2}^{\infty} \frac{(\mathfrak{a}_{1})_{j-1}...(\mathfrak{a}_{\mathfrak{q}})_{j-1}}{(\mathfrak{b}_{1})_{j-1}...(\mathfrak{b}_{\mathfrak{s}})_{j-1}} \frac{z^{j-1}}{(j-1)!}$$

correspondingly a function $\mathfrak{h}(\mathfrak{a}_1,...,\mathfrak{a}_{\mathfrak{a}};\mathfrak{b}_1,...,\mathfrak{b}_{\mathfrak{s}};z)$ is defined by

$$\mathfrak{h}(\mathfrak{a}_1,...,\mathfrak{a}_{\mathfrak{q}};\mathfrak{b}_1,...,\mathfrak{b}_{\mathfrak{s}};z)=z_{\mathfrak{q}}\mathcal{F}_{\mathfrak{s}}(\mathfrak{a}_1,...,\mathfrak{a}_{\mathfrak{q}};\mathfrak{b}_1,...,\mathfrak{b}_{\mathfrak{s}};z),\quad z\in\mathfrak{U}.$$

Dziok and Srivastava [5] (see also [6]) considered a linear operator

$$\mathcal{H}(\mathfrak{a}_1,...,\mathfrak{a}_{\mathfrak{q}};\mathfrak{b}_1,...,\mathfrak{b}_{\mathfrak{s}};z):\mathcal{A}\to\mathcal{A}$$

defined by the following Hadamard product:

$$\mathcal{H}(\mathfrak{a}_1,...,\mathfrak{a}_{\mathfrak{q}};\mathfrak{b}_1,...,\mathfrak{b}_{\mathfrak{s}})\mathfrak{f}(z)=\mathfrak{h}(\mathfrak{a}_1,...,\mathfrak{a}_{\mathfrak{q}};\mathfrak{b}_1,...,\mathfrak{b}_{\mathfrak{s}})*\mathfrak{f}(z)\quad \mathfrak{q}\leq \mathfrak{s}+1,\ z\in\mathfrak{U}.$$

If $\mathfrak{f} \in \mathcal{A}$ is given by (1.1), then we have

$$\mathcal{H}(\mathfrak{a}_1,...,\mathfrak{a}_{\mathfrak{q}};\mathfrak{b}_1,...,\mathfrak{b}_{\mathfrak{s}})\mathfrak{f}(z)=z+\sum_{j=2}^{\infty}\Gamma_j[\mathfrak{a}_1;\mathfrak{b}_1]a_jz^j$$

where

$$\Gamma_j[\mathfrak{a}_1;\mathfrak{b}_1] = \frac{(\mathfrak{a}_1)_{j-1}...(\mathfrak{a}_{\mathfrak{q}})_{j-1}}{(\mathfrak{b}_1)_{j-1}...(\mathfrak{b}_{\mathfrak{s}})_{j-1}} \frac{1}{(j-1)!} \quad j \in \mathbb{N}.$$

To make the notation simple, we write

$$\mathcal{H}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_1;\mathfrak{b}_1;z] = \mathcal{H}(\mathfrak{a}_1,...,\mathfrak{a}_{\mathfrak{q}};\mathfrak{b}_1,...,\mathfrak{b}_{\mathfrak{s}})\mathfrak{f}(z).$$

The linear operator $\mathcal{H}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_1;\mathfrak{b}_1;z]$ is a generalization of many other linear operators considered earlier.

In the present article, we innovate a new subclass of the bi-univalent functions which are defined by the Dziok-Srivastava operator also we get upper bound estimates on the coefficients $|a_2|$ and $|a_3|$ by applying the methods used earlier by Srivastava et al. [14] (see also [8]). Our results generalize and improve those in related studies of several earlier authors.

2. The subclass $_{\Sigma}\mathcal{H}_{\mathfrak{q},\mathfrak{s}}^{\Theta,\Upsilon}[\mathfrak{a}_{1};\mathfrak{b}_{1};\xi]$

In this section, we represent and examine the general subclass $\Sigma \mathcal{H}_{\mathfrak{q},\mathfrak{s}}^{\Theta,\Upsilon}[\mathfrak{a}_1;\mathfrak{b}_1;\xi]$.

DEFINITION 2.1. Let the analytic functions $\Theta, \Upsilon : \mathfrak{U} \to \mathbb{C}$ be so constrained that

$$\min\{\Re\mathfrak{e}(\Theta(z)), \Re\mathfrak{e}(\Upsilon(z))\} > 0, \quad z \in \mathfrak{U} \text{ and } \Theta(0) = 1 = \Upsilon(0). \tag{2.1}$$

We say that a function $\mathfrak{f} \in {}_{\Sigma}\mathcal{H}_{\mathfrak{q},\mathfrak{s}}^{\Theta,\Upsilon}[\mathfrak{a}_1;\mathfrak{b}_1;\xi], (\xi \geq 1)$, if the following conditions satisfy

$$\mathfrak{f} \in \Sigma$$
 and $(1-\xi)\frac{\mathcal{H}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_1;\mathfrak{b}_1;z]}{z} + \xi(\mathcal{H}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_1;\mathfrak{b}_1;z])' \in \Theta(\mathfrak{U}), \quad z \in \mathfrak{U},$ (2.2)

and

$$(1 - \xi)\frac{\mathfrak{g}(w)}{w} + \xi \mathfrak{g}'(w) \in \Upsilon(\mathfrak{U}), \quad w \in \mathfrak{U}, \tag{2.3}$$

where the function $\mathfrak{g}(w)$ is given by

$$\mathfrak{g}(w) = \mathcal{H}_{\mathfrak{q},\mathfrak{s}}^{-1}[\mathfrak{a}_1;\mathfrak{b}_1;z]
= w - \Gamma_2[\mathfrak{a}_1;\mathfrak{b}_1]a_2w^2 + (2(\Gamma_2[\mathfrak{a}_1;\mathfrak{b}_1])^2a_2 - \Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]a_3)w^3 + \cdots$$
(2.4)

REMARK 2.2. There are different options of the functions $\Theta(z)$ and $\Upsilon(z)$ which would provide interesting subclasses of the analytic function class \mathcal{A} .

1. If we take

$$\Theta(z) = \Upsilon(z) = \left(\frac{1+z}{1-z}\right)^{\lambda} \quad z \in \mathfrak{U}, \ 0 < \lambda \le 1,$$

then the functions $\Theta(z)$ and $\Upsilon(z)$ satisfy the hypotheses of Definition 2.1. Clearly, if $\mathfrak{f} \in {}_{\Sigma}\mathcal{H}_{\mathfrak{q},\mathfrak{s}}^{\Theta,\Upsilon}[\mathfrak{a}_1;\mathfrak{b}_1;\xi]$, then we have

$$\left| arg\left((1-\xi) \frac{\mathcal{H}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_1;\mathfrak{b}_1;z]}{z} + \xi (\mathcal{H}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_1;\mathfrak{b}_1;z])' \right) \right| < \frac{\lambda \pi}{2} \quad z \in \mathfrak{U}, \ \xi \geq 1,$$

and

$$\left| arg\left((1-\xi)\frac{\mathfrak{g}(w)}{w} + \xi \mathfrak{g}'(w) \right) \right| < \frac{\lambda \pi}{2} \quad w \in \mathfrak{U}, \ \xi \ge 1.$$

2. If we take

$$\Theta(z) = \Upsilon(z) = \frac{1 + (1 - 2\delta)z}{1 - z} \quad z \in \mathfrak{U}, \ 0 \le \delta < 1,$$

then the functions $\Theta(z)$ and $\Upsilon(z)$ satisfy the hypotheses of Definition 2.1. Clearly, if $\mathfrak{f} \in {}_{\Sigma}\mathcal{H}^{\Theta,\Upsilon}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_1;\mathfrak{b}_1;\xi]$, then we have

$$\mathfrak{Re}\left[(1-\xi)\frac{\mathcal{H}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_1;\mathfrak{b}_1;z]}{z}+\xi(\mathcal{H}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_1;\mathfrak{b}_1;z])'\right]>\delta\quad z\in\mathfrak{U},\ \xi\geq 1,\ 0\leq\delta<1,$$

$$\mathfrak{Re}\left[(1-\xi)\frac{\mathfrak{g}(w)}{w}+\xi\mathfrak{g}'(w)\right]>\delta,\quad w\in\mathfrak{U},\ \xi\geq1,\ 0\leq\delta<1.$$

3. For
$$\mathfrak{q}=2,\mathfrak{s}=1,\mathfrak{a}_1=\mathfrak{a}_2=\mathfrak{b}_1=\xi=1$$
 and $\Theta(z)=\Upsilon(z)=\left(\frac{1+z}{1-z}\right)^{\lambda}$, we have
$${}_{\Sigma}\mathcal{H}_{1,2}^{\Theta,\Upsilon}[1;1;1]=\mathcal{H}_{\Sigma}^{\lambda},$$

where the class
$$\mathcal{H}^{\lambda}_{\Sigma}$$
 was studied by Srivastava et al [14].
4. For $\mathfrak{q}=2,\mathfrak{s}=1,\mathfrak{a}_1=\mathfrak{a}_2=\mathfrak{b}_1=\xi=1$ and $\Theta(z)=\Upsilon(z)=\frac{1+(1-2\delta)z}{1-z}$, we have $_{\Sigma}\mathcal{H}^{\Theta,\Upsilon}_{1,2}[1;1;1]=H_{\Sigma}(\delta),$

where the class $\mathcal{H}_{\Sigma}(\delta)$ was studied by Srivastava et al [14].

5. For
$$\Theta(z) = \Upsilon(z) = \left(\frac{1+z}{1-z}\right)^{\lambda}$$
 we have

$$_{\Sigma}\mathcal{H}^{\Theta,\Upsilon}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_{1};\mathfrak{b}_{1};\xi]=\mathcal{H}^{\Sigma}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_{1};\mathfrak{b}_{1};\lambda;\xi],$$

where the class $\mathcal{H}^{\Sigma}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_1;\mathfrak{b}_1;\lambda;\xi]$ was introduced and studied by M. K. Aouf [2].

3. Coefficient Estimates

For proof of the theorem, we need the following lemma.

LEMMA 3.1. [4] If $\phi \in \mathcal{P}$, then $|\phi_j| \leq 2$ for each j, where \mathcal{P} is the class of all functions $\phi(z)$ analytic in \mathfrak{U} for which $\mathfrak{Re}(\phi(z)) > 0$, $\phi(z) = 1 + \phi_1 z + \phi_2 z^2 + \cdots$ for $z \in \mathfrak{U}$.

THEOREM 3.2. Let f(z) given by the Taylor Maclaurin series expansion (1.1) be in the class $_{\Sigma}\mathcal{H}_{\mathfrak{q},\mathfrak{s}}^{\Theta,\Upsilon}[\mathfrak{a}_1;\mathfrak{b}_1;\xi], (\xi\geq 1)$. Then,

$$|a_2| \le \min \left\{ \sqrt{\frac{|\Theta'(0)|^2 + |\Upsilon'(0)|^2}{2(\xi+1)^2 |\Gamma_2[\mathfrak{a}_1;\mathfrak{b}_1]|^2}}, \sqrt{\frac{|\Theta''(0)| + |\Upsilon''(0)|}{4(2\xi+1)|\Gamma_2[\mathfrak{a}_1;\mathfrak{b}_1]|^2}} \right\}, \tag{3.1}$$

and

$$|a_3| \leq \min \left\{ \frac{|\Theta'(0)|^2 + |\Upsilon'(0)|^2}{2(\xi+1)^2 |\Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]|} + \frac{|\Theta''(0)| + |\Upsilon''(0)|}{4(2\xi+1)|\Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]|}, \frac{|\Theta''(0)|}{2(2\xi+1)|\Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]|} \right\}.$$

Proof. First of all, it follows from the conditions (2.2) and (2.3) that,

$$(1 - \xi) \frac{\mathcal{H}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_1; \mathfrak{b}_1; z]}{z} + \xi (\mathcal{H}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_1; \mathfrak{b}_1; z])' = \Theta(z) \quad z \in \mathfrak{U}, \tag{3.2}$$

and

$$(1 - \xi)\frac{\mathfrak{g}(w)}{w} + \xi \mathfrak{g}'(w) = \Upsilon(w) \quad w \in \mathfrak{U}, \tag{3.3}$$

where the function $\mathfrak{g}(w)$ is given by (2.4), respectively, $\Theta(z)$ and $\Upsilon(w)$ satisfy in (2.1). Also, the functions $\Theta(z)$ and $\Upsilon(w)$ have the following Taylor-Maclaurin series expansions:

$$\Theta(z) = 1 + \Theta_1 z + \Theta_2 z^2 + \cdots,
\Upsilon(w) = 1 + \Upsilon_1 w + \Upsilon_2 w^2 + \cdots.$$
(3.4)

Now, by comparing the series expansions (3.4) by the coefficients (3.2) and (3.3), we get

$$(\xi + 1)\Gamma_2[\mathfrak{a}_1; \mathfrak{b}_1]a_2 = \Theta_1 \tag{3.5}$$

$$(2\xi + 1)\Gamma_3[\mathfrak{a}_1; \mathfrak{b}_1]a_3 = \Theta_2 \tag{3.6}$$

$$-(\xi+1)\Gamma_2[\mathfrak{a}_1;\mathfrak{b}_1]a_2 = \Upsilon_1 \tag{3.7}$$

$$(2\xi + 1)(2(\Gamma_2[\mathfrak{a}_1; \mathfrak{b}_1])^2 a_2^2 - \Gamma_3[\mathfrak{a}_1; \mathfrak{b}_1] a_3) = \Upsilon_2. \tag{3.8}$$

From (3.5) and (3.7), we obtain

$$\Theta_1 = -\Upsilon_1
\Theta_1^2 + \Upsilon_1^2 = 2(\xi + 1)^2 (\Gamma_2[\mathfrak{a}_1; \mathfrak{b}_1])^2 a_2^2.$$
(3.9)

Also, From (3.6) and (3.8), we find that

$$\Theta_2 + \Upsilon_2 = 2(2\xi + 1)(\Gamma_2[\mathfrak{a}_1; \mathfrak{b}_1])^2 a_2^2. \tag{3.10}$$

Therefore, we find from the equations (3.9) and (3.10) that

$$|a_2|^2 \le \frac{|\Theta'(0)|^2 + |\Upsilon'(0)|^2}{2(\xi+1)^2 |\Gamma_2[\mathfrak{a}_1;\mathfrak{b}_1]|^2}$$

and

$$|a_2|^2 \le \frac{|\Theta''(0)| + |\Upsilon''(0)|}{4(2\xi+1)|\Gamma_2[\mathfrak{a}_1;\mathfrak{b}_1]|^2}.$$

So we get the requested estimate on the coefficient $|a_2|$ as asserted in (3.1). Next, in order to find the bound on the coefficient $|a_3|$, we subtract (3.8) from (3.6). We thus get

$$\Theta_2 - \Upsilon_2 = 2(2\xi + 1)(\Gamma_3[\mathfrak{a}_1; \mathfrak{b}_1]a_3 - (\Gamma_2[\mathfrak{a}_1; \mathfrak{b}_1])^2 a_2^2). \tag{3.11}$$

Upon substituting the value of a_2^2 from (3.9) into (3.11), it follows that

$$a_3 = \frac{\Theta_1^2 + \Upsilon_1^2}{2(\xi+1)^2 \Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]} + \frac{\Theta_2 - \Upsilon_2}{2(2\xi+1) \Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]}.$$

We thus find that

$$|a_3| \leq \frac{|\Theta'(0)|^2 + |\Upsilon'(0)|^2}{2(\xi+1)^2|\Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]|} + \frac{|\Theta''(0)| + |\Upsilon''(0)|}{4(2\xi+1)|\Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]|}.$$

On the other hand, upon substituting the value of a_2^2 from (3.10) into (3.11), it follows that

$$a_3 = \frac{\Theta_2}{(2\xi + 1)\Gamma_3[\mathfrak{a}_1; \mathfrak{b}_1]}.$$

Consequently, we have

$$|a_3| \le \frac{|\Theta''(0)|}{2(2\xi+1)|\Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]|}.$$

This completes the proof of Theorem 3.2.

4. Corollaries and Consequences

By setting $\Theta(z) = \Upsilon(z) = \left(\frac{1+z}{1-z}\right)^{\lambda}$, $\xi = 1, \mathfrak{q} = 2$ and $\mathfrak{s} = \mathfrak{a}_1 = \mathfrak{a}_2 = \mathfrak{b}_1 = 1$ in Theorem 3.2. we get the following result.

COROLLARY 4.1. Let the function $\mathfrak{f}(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class $\mathcal{H}^{\lambda}_{\Sigma}$. Then

$$|a_2| \le \frac{\sqrt{2}\lambda}{\sqrt{3}}$$
 and $|a_3| \le \frac{2\lambda^2}{3}$.

REMARK 4.2. Corollary 4.1 is an development of the following estimates obtained by Srivastava et al. [14].

COROLLARY 4.3. [14] Let the function $\mathfrak{f}(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class $\mathcal{H}^{\lambda}_{\Sigma}$. Then

$$|a_2| \le \frac{\sqrt{2}\lambda}{\sqrt{\lambda+2}}$$
 and $|a_3| \le \frac{(3\lambda+2)\lambda}{3}$.

By setting $\Theta(z) = \Upsilon(z) = \left(\frac{1+z}{1-z}\right)^{\lambda}$ in Theorem 3.2, we get the following consequence.

COROLLARY 4.4. Let the function $\mathfrak{f}(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class ${}_{\Sigma}\mathcal{H}_{\mathfrak{q},\mathfrak{s}}^{\Theta,\Upsilon}[\mathfrak{a}_1;\mathfrak{b}_1;\xi], (\eta \geq 1)$. Then

$$|a_2| \leq \min \left\{ \frac{2\lambda}{|\Gamma_2[\mathfrak{a}_1;\mathfrak{b}_1]|(\xi+1)} , \frac{2\lambda}{|\Gamma_2[\mathfrak{a}_1;\mathfrak{b}_1]|\sqrt{2(2\xi+1)}} \right\},$$

and

$$|a_3| \le \frac{2\lambda^2}{|\Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]|(2\xi+1)}.$$

Thus, Corollary 4.4 is an improvement of the following estimates obtained by Auof [2].

COROLLARY 4.5. [2] Let the function $\mathfrak{f}(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class $\mathcal{H}^{\Sigma}_{\mathfrak{q},\mathfrak{s}}[\mathfrak{a}_1;\mathfrak{b}_1;\lambda;\xi](\xi\geq 1)$. Then

$$|a_2| \le \frac{2\lambda}{|\Gamma_2[\mathfrak{a}_1;\mathfrak{b}_1]|\sqrt{(\xi+1)^2 + \lambda(1+2\xi-\xi^2)}}$$

and

$$|a_3| \leq \frac{4\lambda^2}{|\Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]|(\xi+1)^2} + \frac{2\lambda}{|\Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]|(2\xi+1)}.$$

Remark 4.6. For the coefficient $|a_2|$ with conditions $0 < \lambda \le 1, \xi \ge 1 + \sqrt{2}$

$$\frac{2\lambda}{|\Gamma_2[\mathfrak{a}_1;\mathfrak{b}_1]|(\xi+1)} \leq \frac{2\lambda}{|\Gamma_2[\mathfrak{a}_1;\mathfrak{b}_1]|\sqrt{(\xi+1)^2 + \lambda(1+2\xi-\xi^2)}},$$

and with conditions $0 < \lambda \le 1, 1 \le \xi < 1 + \sqrt{2}$

$$\frac{2\lambda}{|\Gamma_2[\mathfrak{a}_1;\mathfrak{b}_1]|\sqrt{2(2\xi+1)}} \leq \frac{2\lambda}{|\Gamma_2[\mathfrak{a}_1;\mathfrak{b}_1]|\sqrt{(\xi+1)^2+\lambda(1+2\xi-\xi^2)}}.$$

Otherwise, for the coefficient $|a_3|$, we make the following investigations:

$$\begin{split} \frac{2\lambda^2}{|\Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]|(2\xi+1)} &\leq \frac{2\lambda}{|\Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]|(2\xi+1)} \\ &\leq \frac{4\lambda^2}{|\Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]|(\xi+1)^2} + \frac{2\lambda}{|\Gamma_3[\mathfrak{a}_1;\mathfrak{b}_1]|(2\xi+1)}. \end{split}$$

Acknowledgments

A part of this research was carried out while the second author was visiting the University of Alberta. The authors are grateful to professor Sibel Yalçın for her comments.

References

- [1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Subramaniam, Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344–351.
- [2] M. K. Aouf, R. M. El-Ashwah, and A. Abd-Eltawab, New Subclasses of Biunivalent Functions Involving Dziok-Srivastava Operator, ISRN Mathematical Analysis (2013), Article ID 387178, 5 pages.
- [3] D. A. Brannan and J. G. Clunie (Eds.), Aspects of Contemporary Complex Analysis, Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1–20, 1979, (Academic Press, New York and London, 1980).
- [4] P. L. Duren, *Univalent Functions*, Springer-Verlag, New York, Berlin, 1983.
- [5] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1–13.
- [6] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003), 7–18.
- [7] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, PanAm. Math. J. 22 (2012), 15–26.
- [8] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569–1573.
- [9] A. W. Kedzierawski, Some remarks on bi-univalent functions, Ann. Univ. Mariae Curie Skłodowska Sect. A. 39 (1985), 77–81.
- [10] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68.
- [11] M.M. Shabani and S. Hashemi Sababe, On Some Classes of Spiral-like Functions Defined by the Salagean Operator, Korean J. Math. 28 (2020), 137–147.
- [12] M.M. Shabani, Maryam Yazdi and S. Hashemi Sababe, Coefficient Bounds for a Subclass of Harmonic Mappings Convex in one direction, KYUNGPOOK Math. J. 61 (2021), 269-278
- [13] M.M. Shabani, Maryam Yazdi and S. Hashemi Sababe, Some distortion theorems for new subclass of harmonic univalent functions, Honam Mathematical J. **42(4)** (2020), 701–717.
- [14] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
- [15] D. L. Tan, Coefficient estimates for bi-univalent functions, Chinese Ann. Math. Ser. A. 5 (1984), 559–568.
- [16] Q. H. Xu, Y. C. Gui, and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990–994.
- [17] Q. H. Xu, H.G. Xiao, and H. M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated cofficient estimate problems, Appl. Math. Comput. 218 (2012), 11461–11465.

Mohammad Mehdi Shabani

Faculty of sciences, Imam Ali University, Tehran, Iran.

 $E ext{-}mail:$ Mohammadmehdishabani@yahoo.com

Saeed Hashemi Sababe

Young Researchers and Elite Club, Malard Branch, Islamic Azad University, Malard, Iran.

 $E ext{-}mail: Hashemi_1365@yahoo.com$