DOI QR코드

DOI QR Code

폐배터리 블랙 매스(black mass) 회수를 위한 파쇄/분급 공정 분석 및 2종 혼합물의 수학적 분쇄 모델링

Analysis of Crushing/Classification Process for Recovery of Black Mass from Li-ion Battery and Mathematical Modeling of Mixed Materials

  • 김관호 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 이훈 (한국지질자원연구원 자원활용연구본부 자원회수연구센터)
  • Kwanho, Kim (Mineral Processing & Metallurgy Research Center, The Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Hoon, Lee (Mineral Processing & Metallurgy Research Center, The Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 투고 : 2022.12.05
  • 심사 : 2022.12.16
  • 발행 : 2022.12.31

초록

리튬이온 배터리의 사용은 전자기기 및 전기차 등의 생산량 증가로 인해 사용량이 크게 증가하고 있으며, 이와 맞물려 향후 폐배터리의 발생량 증가도 예상된다. 따라서 폐배터리를 구성하고 있는 여러 유가 자원 중 Ni, Co, Mn, Li 등이 함유되어 있는 양극 활물질이 매우 중요한 유가 자원으로, 이를 재활용하기 위한 많은 연구가 진행되고 있다. 양극 활물질 회수를 위해서 일반적으로 폐배터리로부터 블랙 매스(Black mass)를 회수하고, 이를 처리하여 주요 금속 자원을 회수한다. 블랙 매스를 회수하는 공정은 폐배터리를 수거-방전-해체-파쇄-분급의 순서로 이루어지며, 본 연구에서는 블랙 매스 회수를 위한 파쇄/분급 공정을 분석하였다. 파쇄/분급 공정을 통해 다양한 공정 산물의 입도 특성을 분석하고, 이 과정에서 생산된 산물의 입도별 형상을 현미경 및 SEM(Scanning Electron Microscopy)-EDS(Energy Dispersive Spectrometer)로 분석하였다. 분석 결과 블랙 매스로 회수되는 입자 중 74 ㎛의 미세한 입자들은 양극/음극 활물질이 전극으로부터 단체분리되어 존재하였지만, 100 ㎛ 이상의 입자들은 전극과 활물질이 붙어있는 상태에서 파쇄에 의해 입도가 감소되어 존재함을 확인하였다. 또한 배터리의 특징인 2종 혼합물(전극과 활물질)이 결합되어 있는 시료에 대해 파분쇄 특성을 모사할 수 있는 PBM(Population Balance Model) 을 개발하였으며, 2종 혼합물의 분쇄 상수를 도출하고 입도 분포 예측 성능을 검증하였다.

The use of lithium-ion batteries increases significantly with the rapid spread of electronic devices and electric vehicle and thereby an increase in the amount of waste batteries is expected in the near future. Therefore, studies are continuously being conducted to recover various resources of cathode active material (Ni, Co, Mn, Li) from waste battery. In order to recover the cathode active material, black mass is generally recovered from waste battery. The general process of recovering black mass is a waste battery collection - discharge - dismantling - crushing - classification process. This study focus on the crushing/classification process among the processes. Specifically, the particle size distribution of various samples at each crushing/classification step were evaluated, and the particle shape of each particle fraction was analyzed with a microscope and SEM (Scanning Electron Microscopy)-EDS(Energy Dispersive Spectrometer). As a result, among the black mass particle, fine particle less than 74 ㎛ was the mixture of cathode and anode active material which are properly liberated from the current metals. However, coarse particle larger than 100 ㎛ was present in a form in which the current metal and active material were combined. In addition, this study developed a PBM(Population Balance Model) system that can simulate two-species mixture sample with two different crushing properties. Using developed model, the breakage parameters of two species was derived and predictive performance of breakage distribution was verified.

키워드

과제정보

본 연구는 환경부의 재원으로 한국환경산업기술원에서 시행한 미래발생 폐자원의 재활용 촉진 기술개발사업의 지원을 받아 수행한 연구입니다(No. 2022003500006, 22-9876).

참고문헌

  1. Grand View Research, 2021 : Lithium-ion Battery Market Size, Share & Trends Analysis Report by Product, By Application, By Region, And Segment Forecasts, pp.2022-2030. 
  2. Statista, 2022 : Mobility Markets - Electric Vehicles : Market data analysis & forecast(Worldwide). 
  3. Baum, Z. J., Bird, R. E., Yu, X., et al., 2022 : Lithium-ion battery recycling - Overview of Techniques and Trends, ACS Energy Lett., 7, pp.712-719  https://doi.org/10.1021/acsenergylett.1c02602
  4. Contestabile, M., Panero, S., Scrosati, B., 1999 : A laboratory-scale ilthium battery recycling process, Journal of Power Sources, 83, pp.75-78.  https://doi.org/10.1016/S0378-7753(99)00261-X
  5. Zhang, P., Yokoyama, T., Itabashi, O., et al., 1999 : Recovery of metal values from spent nickel-metal hydride rechargeable batteries, Journal of Power Sources, 77, pp.116-122.  https://doi.org/10.1016/S0378-7753(98)00182-7
  6. Mishra, G., Jha, R., Meshram, A., et al., 2022 : A review on recycling of lithium-ion batteries to recover critical metals, Journal of Environmental Chemical Engineering, 10(6), 108534. 
  7. Ali, H., Khan, H. A., Pecht, M., 2022 : Preprocessing of spent lithium-ion batteries for recycling : Need, methods, and trends, Renewable and Sustainable Energy Reviews, 168, 112809. 
  8. Wu, J., Zheng, M., Liu, T., et al., 2023 : Direct recovery : A sustainable recycling technology for spent lithium-ion battery, Energy Storage Materials, 54, pp.120-134. 
  9. Jung, J. C., Sui, P. C., Zhang, J. J., 2021 : A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatment, Journal of Energy Storage, 35, 102217. 
  10. Golmohammadzadeh, R., Faraji, F., Rashchi, F., 2018 : Recovery of lithium and cobalt from spent lithium ion batteries using organic acids as leaching reagents : A review, Resources, Conservation and Recycling, 136, pp. 418-435  https://doi.org/10.1016/j.resconrec.2018.04.024
  11. Lei, S., Sun, W., Yang, Y., 2022 : Solvent extraction for recycling of spent lithium-ion batteries, Journal of Hazardous Materials, 424(D), 127654. 
  12. Niu, B., Xiao, J., Xu, Z., 2022 : Advances and challenges in anode graphite recycling from spent lithium-ion batteries, Journal of Hazardous Materials, 439(5), 129678. 
  13. Yu, X., Yu, S., Yang, Z.. et al., 2022 : Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes, Energy Storage Materials, 51, pp.54-62.  https://doi.org/10.1016/j.ensm.2022.06.017
  14. Zhang, T., He, Y.. Ge, L., et al., 2013 : Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries, Journal of Power Sources, 240, pp.766-771.  https://doi.org/10.1016/j.jpowsour.2013.05.009
  15. Wuschke, L., Jackel, H., Leibner, T., et al., 2019: Crushing of large Li-ion battery cells, Waste Management, 85, pp.317-326.  https://doi.org/10.1016/j.wasman.2018.12.042
  16. Wang, X., Gaustad, G., Babbitt, C. W., 2016 : Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation, Waste Management, 51, pp.204-213.  https://doi.org/10.1016/j.wasman.2015.10.026
  17. Zhong, X., Lui, W., Han, J., et al., 2020 : Pneumatic separation for crushed spent lithium-ion batteries, Waste Management, 118, pp.331-340.  https://doi.org/10.1016/j.wasman.2020.08.053
  18. Cho, H. C., 2021 : Crushing and Grinding, pp.4-7, Apub Press, Seoul. 
  19. Cho, H. C., 2021 : Crushing and Grinding, pp.117-128, Apub Press, Seoul. 
  20. Lee, H., Cho, H. C., 2002: Determination of the breakage parameters on the non metallic minerals, Journal of the Korean Society of Mineral and Energy Resources Engineers, 37(4), pp.248-256.