DOI QR코드

DOI QR Code

Research Trends and Datasets Review using Satellite Image

위성영상 이미지를 활용한 연구 동향 및 데이터셋 리뷰

  • 김세형 (아주대학교, 경영대학 e-비즈니스 학과) ;
  • 채정우 (아주대학교, 경영대학 e-비즈니스 학과) ;
  • 강주영 (아주대학교, 경영대학 e-비즈니스 학과)
  • Received : 2022.02.14
  • Accepted : 2022.02.14
  • Published : 2022.02.28

Abstract

Like other computer vision research trends, research using satellite images was able to achieve rapid growth with the development of GPU-based computer computing capabilities and deep learning methodologies related to image processing. As a result, satellite images are being used in various fields, and the number of studies on how to use satellite images is increasing. Therefore, in this paper, we will introduce the field of research and utilization of satellite images and datasets that can be used for research using satellite images. First, studies using satellite images were collected and classified according to the research method. It was largely classified into a Regression-based Approach and a Classification-based Approach, and the papers used by other methods were summarized. Next, the datasets used in studies using satellite images were summarized. This study proposes information on datasets and methods of use in research. In addition, it introduces how to organize and utilize domestic satellite image datasets that were recently opened by AI hub. In addition, I would like to briefly examine the limitations of satellite image-related research and future trends.

기존 컴퓨터 비전의 연구 동향과 마찬가지로, 위성영상을 이용한 연구도 GPU 기반의 컴퓨터 연산능력과 이미지 처리와 관련된 딥러닝 방법론의 발전으로 많이 이루어지고 있다. 그로 인해 다양한 분야에 위성영상이 활용되고 있고, 위성 영상을 활용에 관한 연구도 증가하고 있다. 본 연구에서는 위성영상의 연구 활용 분야와 위성영상을 활용한 연구에 이용할 수 있는 데이터셋에 대해 소개하도록 한다. 먼저, 위성영상을 활용한 연구를 수집하여 연구 방법에 따라 분류하였다. 크게 분류 기반 연구와 회귀 기반 연구로 분류하였고, 그 이외의 방법으로 활용한 논문들을 정리하였다. 다음으로 위성영상을 활용한 연구들에서 이용한 데이터셋을 정리하였다. 본 연구에서는 데이터셋의 정보와 연구에서의 활용 방법에 대해 제안한다. 이와 함께 최근 AI hub에서 개방한 국내 위성영상 데이터셋의 정리와 활용 방안에 대해 소개한다. 마지막으로, 위성 이미지 관련 연구의 한계점과 앞으로의 동향을 간략하게 제시하였다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터지원사업의 연구결과로 수행되었음(IITP-2021-2018-0-01424)

References

  1. Abburu, S., et al., "An Ontology Based Methodology for Satellite Data Semantic Interoperability," Advances in Electrical and Computer Engineering, vol. 15, no. 3, pp. 105-110, 2015. https://doi.org/10.4316/AECE.2015.03015
  2. "시장분석부터 작물 생산량 예측까지"...인공위성과 인공지능이 만나면 가능해지는 일은? (2021), 김동원, Ai타임스, http://www.aitimes.com/news/articleView.html?idxno=139726
  3. 김은정, "세계 지구관측 위성 시장 현황 및 전망," 항공우주산업기술동향, 제16권, 제1호, 22-28쪽, 2018년 7월
  4. Chengjuan, R., K. Dae-kyoo, and J. Dongwon, "A Survey of Deep Learning in Agriculture: Techniques and Their Applications," JIPS(Journal of Information Processing Systems), vol. 16, no. 5, pp. 1015-1033, Oct. 2020.
  5. M. Gheisari, G. Wang, and M.Z.A. Bhuiyan, "A Survey on Deep Learning in Big Data," 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Computational Science and Engineering (CSE) and Embedded and Ubiquitous Computing (EUC), 2017 IEEE International Conference on, CSE-EUC, pp. 173-180, 2017.
  6. Guragai, B., et al., "A Survey on Deep Learning Classification Algorithms for Motor Imagery," 2020 32nd International Conference on Microelectronics (ICM), pp. 1-4, Aqaba, Jordan, Dec. 2020.
  7. Gunasheela, K.S., et al., "Satellite image compression-detailed survey of the algorithms," Proc. of International Conference on Cognition and Recognition, pp 187-198, 2018.
  8. Sharma, R., et al., "A review of soft classification approaches on satellite image and accuracy assessment," Proc. of Fifth International Conference on Soft Computing for Problem Solving, pp. 629-639, 2016.
  9. 오치영, et al., "고해상도 위성영상의 토지피복분류와 정확도 비교 연구," 한국지리정보학회지, 제13권, 제1호, 89-100쪽, 2010년 https://doi.org/10.11108/KAGIS.2010.13.1.089
  10. Abburu, S. and S.B. Golla, "Satellite image classification methods and techniques: A review," International journal of computer Applications, vol. 119, no. 8, pp. 20-25, June. 2015. https://doi.org/10.5120/21088-3779
  11. Mahmon, N.A. and N. Ya'acob, "A review on classification of satellite image using Artificial Neural Network (ANN)," 2014 IEEE 5th Control and System Graduate Research Colloquium, Shah Alam, Malaysia, Aug. 2014.
  12. Dhingra, S. and D. Kumar, "A review of remotely sensed satellite image classification," International Journal of Electrical & Computer Engineering, vol. 9, no. 3, pp. 2088-8708, June. 2019.
  13. 박정재, 구자용, 김병선, "위성영상을 이용한 중분류 토지피복도의 제작과정 개선," 한국 GIS 학회지, 제15권, 제1호, 67-80쪽, 2007년 4월
  14. 조원호, 임용호, 박기호, "합성곱 신경망을 이용한 딥러닝 기반의 토지피복 분류: 한국 토지피복을 대상으로," 대한지리학회지, 제54권, 제1호, 1-16쪽, 2019년
  15. Do, J., S. Ahn, and J. Kang, "Urbanization effect of mega sporting events using sentinel-2 satellite images: The case of the pyeongchang olympics," Sustainable Cities and Society, vol. 74, pp. 103-158, Nov. 2021.
  16. Gislason, P.O., J.A. Benediktsson, and J.R. Sveinsson, "Random forests for land cover classification," Pattern recognition letters, vol. 27, no. 4, pp. 294-300, Mar. 2006. https://doi.org/10.1016/j.patrec.2005.08.011
  17. Ronneberger, O., P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical image computing and computer-assisted intervention. 2015. Springer.
  18. Ulmas, P. and I. Liiv, "Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification," 2020.
  19. Hackworth, J. and N. Smith, "The changing state of gentrification," Tijdschrift voor economische en sociale geografie, vol. 92, no. 4, pp. 464-477, Nov. 2001. https://doi.org/10.1111/1467-9663.00172
  20. Ahmari, R., et al., "Gentrification: Causation and Identification", 2016.
  21. Jean, N., et al., "Combining satellite imagery and machine learning to predict poverty," Science, vol. 353, no. 6301, pp. 790-794, Aug. 2016. https://doi.org/10.1126/science.aaf7894
  22. Zheng, Y.-J., et al., "Co-evolutionary Fuzzy Deep Transfer Learning for Disaster Relief Demand Forecasting," IEEE Transactions on Emerging Topics in Computing, June. 2021.
  23. Pelletier, C., G.I. Webb, and F. Petitjean, "Temporal convolutional neural network for the classification of satellite image time series," Remote Sensing, vol. 11, no. 5, pp. 523, Mar. 2019. https://doi.org/10.3390/rs11050523
  24. Verbesselt, J., et al., "Detecting trend and seasonal changes in satellite image time series," Remote sensing of Environment, vol. 114, no. 1, pp. 106-115, 2010. https://doi.org/10.1016/j.rse.2009.08.014
  25. Chakraborty, D., "Clustering Techniques for Land Use Land Cover Classification of Remotely Sensed Images," Geographic Information Systems in Geospatial Intelligence, IntechOpen, pp. 107-120, 2019.
  26. Bischke, B., et al. "Multi-task learning for segmentation of building footprints with deep neural networks," 2019 IEEE International Conference on Image Processing (ICIP), Sep. 2019.
  27. Bandyopadhyay, S. and U. Maulik, "Genetic clustering for automatic evolution of clusters and application to image classification," Pattern Recognition, vol. 35, no. 6, pp. 1197-1208, June. 2002. https://doi.org/10.1016/S0031-3203(01)00108-X
  28. Bandyopadhyay, S. and U. Maulik, "An evolutionary technique based on K-Means algorithm for optimal clustering in RN," Information Sciences, vol. 146, no. 1-4, pp. 221-237, Oct. 2002. https://doi.org/10.1016/S0020-0255(02)00208-6
  29. Bello, O.M. and Y.A. Aina, "Satellite remote sensing as a tool in disaster management and sustainable development: towards a synergistic approach," Procedia-Social and Behavioral Sciences, vol. 120, pp. 365-373, Mar. 2014. https://doi.org/10.1016/j.sbspro.2014.02.114
  30. Voigt, S., et al., "Satellite image analysis for disaster and crisis-management support," IEEE transactions on geoscience and remote sensing, vol. 45, no. 6, pp. 1520-1528, May. 2007. https://doi.org/10.1109/TGRS.2007.895830
  31. Pettorelli, N., et al., "Satellite remote sensing for applied ecologists: opportunities and challenges," Journal of Applied Ecology, vol. 51, no. 4, pp. 839-848, Aug. 2014. https://doi.org/10.1111/1365-2664.12261
  32. Remote Sensors (2021), NASA, https://earthdata.nasa.gov/learn/remote-sensors (May. 2021)
  33. Zhu, X.X., et al., "So2Sat LCZ42: A Benchmark DataSet for the Classification of Global Local Climate Zones [Software and Data Sets]," IEEE Geoscience and Remote Sensing Magazine, Geoscience and Remote Sensing Magazine, IEEE, IEEE Geosci. Remote Sens. Mag., 2020. 8(3): p. 76-89. https://doi.org/10.1109/MGRS.2020.2964708
  34. Qiu, C., et al., "Multilevel Feature Fusion-Based CNN for Local Climate Zone Classification From Sentinel-2 Images: Benchmark Results on the So2Sat LCZ42 Dataset," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 2793-2806, May. 2020. https://doi.org/10.1109/jstars.2020.2995711
  35. Helber, P., et al., "Eurosat: A novel dataset and Deep learning Benchmark for Land Use and Land Cover Classification," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 7, pp. 2217-2226, Aug. 2017. https://doi.org/10.1109/jstars.2019.2918242
  36. Raza, A., et al., "Diverse Capsules Network Combining Multiconvolutional Layers for Remote Sensing Image Scene Classification," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 5297-5313, 2020. https://doi.org/10.1109/jstars.2020.3021045
  37. resisc45(2021), Tensorflow, https://www.tensorflow.org/datasets/catalog/resisc45(June, 2021)
  38. Shermeyer, J., et al. "Rareplanes: Synthetic Data Takes Flight," Proc. IEEE/CVF Winter Conference on Applications of Computer Vision, June. 2021.
  39. Chiu, M.T., et al. "Agriculture-vision: A large aerial image database for agricultural pattern analysis," Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jan. 2020.
  40. Chiu, M.T., et al., "Agriculture-Vision: A Large Aerial Image Database for Agricultural Pattern Analysis," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Computer Vision and Pattern Recognition (CVPR), 2020 IEEE/CVF Conference on, CVPR, pp. 2825-2835, Jan 2020.
  41. Sumbul, G., et al. "Bigearthnet: A large-scale benchmark archive for remote sensing image understanding," IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, 2019.
  42. Gupta, R., et al., "xBD: A Dataset for Assessing Building Damage from Satellite Imagery," arXiv preprint arXiv:1911.09296v, Nov. 2019.
  43. Heffels, M.R. and J. Vanschoren, "Aerial Imagery Pixel-level Segmentation," arXiv preprint arXiv:2012.02024v1 Dec. 2020.
  44. 토지 피복지도 항공위성 이미지(수도권)(2021), https://aihub.or.kr/aidata/7982(18, 6, 2021)
  45. 네이버시스템. 토지 피복지도 항공위성 이미지(강원 및 충청)(2021)https://aihub.or.kr/aidata/7982(18, 6, 2021)
  46. 위성영상 객체판독(2021), 한국항공우주연구원, https://aihub.or.kr/aidata/7982(18, 6, 2021)