DOI QR코드

DOI QR Code

Experimental Assessment of Reduction in the Negative Skin Friction Using a Pile with a Member Responding to Ground Deformation

지반 변형 대응 부재를 적용한 말뚝의 부마찰력 저감 성능의 실험적 검증

  • Shin, Sehee (Dept. of Civil and Environmental Eng., Incheon National Univ.) ;
  • Lee, Haklin (Dept. of Civil and Environmental Eng., Incheon National Univ.) ;
  • Woo, Sang Inn (Dept. of Civil and Environmental Eng., Incheon National Univ.)
  • 신세희 (인천대학교 건설환경공학과) ;
  • 이학린 (인천대학교 건설환경공학과) ;
  • 우상인 (인천대학교 건설환경공학전공)
  • Received : 2022.02.09
  • Accepted : 2022.03.14
  • Published : 2022.03.31

Abstract

Ground in extremely cold and hot regions can sink by various environmental factors. Ground settlement can generate the negative skin friction to pile shaft, increase the base load of pile, and cut the stability of the pile. This study proposed a member responding ground deformation which can be inserted inside the pile. The member slightly compresses according to the ground settlement to reduce the negative skin friction. As the member materials, this study considered spring and spring-dashpot. To assess the ability of the member, the present research performed model tests for piles with or without the member within settled ground. In the model tests, the base load, total shaft resistance, and horizontal earth pressure were monitored and analyzed. Experimental results show that the pile with spring member can reduce the negative skin friction under small settlement conditions whereas it acts similar to the pile without the member under large settlement conditions as the spring was no longer compressed. However, the pile with the spring-dashpot member can reduce the negative skin friction continuously upon the ground settlement as the dashpot delays the load transfer to the spring and locates friction force on the unloading path.

극한 및 극서지에서는 환경적 요인으로 인하여 지반 침하가 발생할 수 있다. 지반의 침하는 부주면 마찰력을 발생시켜 선단 하중을 증가시켜 말뚝의 안정성을 저해할 수 있다. 본 연구에서는 지반 침하 시 부주면 마찰력에 의해 소폭 압축되는 지반 변형 대응 부재가 삽입되어 부주면 마찰력을 저감시키는 말뚝을 제안하였다. 지반 변형 대응 부재로는 스프링 및 스프링-대시팟 부재가 고려되었다. 제안된 말뚝의 성능을 검증하기 위해 모형 실험을 통해 지반 침하 시 일반 말뚝과 지반 변형 대응 부재가 적용된 말뚝의 선단 하중, 주면 마찰력, 횡 토압을 측정하고 분석하였다. 실험 결과, 스프링 부재 말뚝은 침하량이 작은 경우에는 스프링의 압축에 의해 상대변위가 줄어들며 부주면 마찰력이 감소하였다. 그러나 지반이 지속적으로 침하함에 따라 스프링이 더 이상 압축되지 않는 시점부터는 하중 전달 기전이 일반 말뚝과 유사해졌다. 스프링-대시팟 부재 말뚝의 경우, 대시팟이 스프링으로의 하중 전달을 지연시키고 하중 제하 곡선상에 주면 마찰력을 위치시키므로 지반 침하로 인한 부주면 마찰력이 지속적으로 감소하였다.

Keywords

Acknowledgement

본 연구는 국토교통과학기술진흥원의 지원으로 수행되었으며(21CTAP-C157021-02), 이에 깊은 감사를 드립니다.

References

  1. Alonso, E. E., Josa, A., and Ledesma, A. (1984), Negative Skin Friction on Piles: A Simplified Analysis and Prediction Procedure, Geotechnique, Vol.34, No.3, pp.341-357. https://doi.org/10.1680/geot.1984.34.3.341
  2. Alshenawy, A. O., Hamid, W. M., and Alnuaim, A. M. (2021), A Review on the Characteristics of Sabkha Soils in the Arabian Gulf Region, In Arabian Journal of Geosciences, Vol.14, No.19, pp.1-15. https://doi.org/10.1007/s12517-020-06304-8
  3. Andersland, O. B. and Landanyi, B. (2003), Frozen Ground Engineering Second Edition, John Wiley & Sons, Inc., New Jersey.
  4. ASTM. (2006), ASTM D4254-00: Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density. ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, pp.1-9.
  5. Choi, S. O., Jeon, Y. S., Park, E. S., Jung, Y. B., and Chun, D. S. (2005), Analysis of Subsidence Mechanism and Development of Evaluation Program, Tunnel and underground space, Vol.15, No.3, pp.195-212.
  6. Dastpak, P., Abrishami, S., Rezazadeh Anbarani, M., and Dastpak, A. (2021), Effect of Perforated Plates on the Relative Density of Uniformly Graded Reconstituted Sands Using Air Pluviation Method, Transportation Infrastructure Geotechnology, Vol.8 No.4, pp.569-589. https://doi.org/10.1007/s40515-021-00150-1
  7. Dhowian, A. W. (2017), Laboratory Simulation of Field Preloading on Jizan Sabkha Soil, In Journal of King Saud University - Engineering Sciences, Vol.29, No.1, pp.68-76. https://doi.org/10.1016/j.jksues.2014.06.001
  8. El-Mossallamy, Y. M., Hefny, A. M., Demerdash, M. A., and Morsy, M. S. (2013), Numerical Analysis of Negative Skin Friction on Piles in Soft Clay, HBRC Journal, Vol.9, No.1, pp.68-76.. https://doi.org/10.1016/j.hbrcj.2013.02.006
  9. Feng, Z., Hu, H., Zhao, R., He, J., Dong, Y., Feng, K., Zhao, Y., and Chen, H. (2019), Experiments on reducing negative skin friction of piles, Advances in Civil Engineering, 2019.
  10. Guo, D. and Wang, H. (2017), Permafrost Degradation and Associated Ground Settlement Estimation under 2℃ Global Warming, Climate Dynamics, Vol.49, No.7, pp.2569-2583. https://doi.org/10.1007/s00382-016-3469-9
  11. Han, J. G. and Park, H. (2020), Global Building Market Assessment through 2019 Global Insight Analysis (Focusing on architecture), In Proceedings of The Korea Institute of Building Construction, pp.212-213.
  12. Hariprasad, C., Rajashekhar, M., and Umashankar, B. (2016), Preparation of Uniform Sand Specimens Using Stationary Pluviation and Vibratory Methods, Geotechnical and Geological Engineering, Vol.34, No.6, pp.1909-1922. https://doi.org/10.1007/s10706-016-0064-0
  13. Huang, A. B. (2010), Regional Report for Asia. 2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA, USA, May 2010.
  14. Kanevskiy, M., Shur, Y., and Connor B. (2012), Study of the ice-rich syngenetic permafrost for road design (Interior Alaska). Proceedings of the Tenth International Conference on Permafrost, Salekhard, Russia: The Northern Publisher, Vol.1, pp.25-29
  15. Kim, S., Hong, S. S., and Kim, Y. (2019), Analysis of Characteristics of Construction Environment of Arctic Circle, KSCE 2019 Convention Conference & Expo, pp.881-882.
  16. Koerner, R. M. and Mukhopadhyay, C. (1972), Behavior of Negative Skin Friction on Model Piles in Medium Plasticity Silt, Highway Research Record, No.405, pp.34-44.
  17. Korean Agency for Technology and Standards (KATS) (2002), The method for particle size distribution of soils, F 2302, Korean Agency for Technology and Standards, Chungcheonbuk-do, Korea.
  18. Korean Agency for Technology and Standards (KATS) (2016), Standard test method for density of soil particles, F 2308, Korean Agency for Technology and Standards, Chungcheonbuk-do, Korea.
  19. Lee, K., Shin, S., Lee, H., and Kim, D. (2020), Analysis of Pile Behaviors with Friction Resistance of Skin of Steel Pipe Pile in Ground where Settlement is Predicted, Journal of the Korean geotechnical society, Vol.36, No.11, pp.107-117. https://doi.org/10.7843/KGS.2020.36.11.107
  20. Liu, J., Gao, H., and Liu, H. (2012), Finite Element Analyses of Negative Skin Friction on a Single Pile, Acta Geotechnica, Vol.7, No.3, pp.239-252. https://doi.org/10.1007/s11440-012-0163-x
  21. Yeung, A. T., Viswanathan, R., and Briaud, J.-L. (1996), Field Investigation of Potential Contamination by Bitumen-Coated Piles, Journal of Geotechnical Engineering, Vol.122, No.9, pp.736-744. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(736)