DOI QR코드

DOI QR Code

Influence of Culture Media Formulated with Agroindustrial Wastes on the Antimicrobial Activity of Lactic Acid Bacteria

  • Linares-Morales, Jose R. (Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua.) ;
  • Salmeron-Ochoa, Ivan (Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua.) ;
  • Rivera-Chavira, Blanca E. (Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua.) ;
  • Gutierrez-Mendez, Nestor (Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua.) ;
  • Perez-Vega, Samuel B. (Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua.) ;
  • Nevarez-Moorillon, Guadalupe V. (Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua.)
  • Received : 2021.07.18
  • Accepted : 2021.10.18
  • Published : 2022.01.28

Abstract

The discarding of wastes into the environment is a significant problem for many communities. Still, food waste can be used for lactic acid bacteria (LAB) growth. Here, we evaluated three growth media equivalent to de Mann Rogosa Sharpe (MRS), using apple bagasse, yeast waste, fish flour, forage oats, and cheese whey. Cell-free supernatants of eight LAB strains were tested for antimicrobial activity against nine indicator microorganisms. The supernatants were also evaluated for protein content, reducing sugars, pH, and lactic acid concentration. Cell-free supernatants from fish flour broth (FFB) LAB growth were the most effective. The strain Leuconostoc mesenteroides PIM5 presented the best activity in all media. L. mesenteroides CAL14 completely inhibited L. monocytogenes and strongly inhibited Bacillus cereus (91.1%). The strain L. mesenteroides PIM5 consumed more proteins (77.42%) and reducing sugars (56.08%) in FFB than in MRS broth (51.78% and 30.58%, respectively). Culture media formulated with agroindustrial wastes positively improved the antimicrobial activity of selected LAB, probably due to the production of antimicrobial peptides or bacteriocins.

Keywords

Acknowledgement

Linares Morales. J. R. is a Research Fellow from the Consejo Nacional de Ciencia y Tecnologia (Mexico) during his Ph.D. studies (Fellowship No. 618820).

References

  1. Sabo SS, Converti A, Ichiwaki S, Oliveira RPS. 2019. Bacteriocin production by Lactobacillus plantarum ST16Pa in supplemented whey powder formulations. J. Dairy Sci. 102: 87-99. https://doi.org/10.3168/jds.2018-14881
  2. Food and Agriculture Organization of the United Nations. 2016. The state of world fisheries and aquaculture. Contributing to food security and nutrition for all http://www.fao.org/3/a-i5555e.pdf. Accessed Oct. 10, 2020.
  3. Vazquez JA, Meduina A, Duran AI, Nogueira M, Fernandez-Compas A, Perez-Martin RI, et al. 2019. Production of valuable compounds and bioactive metabolites from by-products of fish discards using chemical processing, enzymatic hydrolysis, and bacterial fermentation. Mar. Drugs 17: 139. https://doi.org/10.3390/md17030139
  4. Mathias TR, de Aguiar PF, Silva JB, de Mello PPM, Servulo EFC. 2017. Brewery wastes reuse for protease production by lactic acid bacteria fermentation. Food Technol. Biotechnol. 55: 218-224.
  5. Boumaiza MA, Colarusso E, Parrilli E, Garcia-Fruitos A, Casillo A, Aris MM, Corsaro D, et al. 2018. Getting value from the waste: recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey. Microb. Cell Fact. 17: 1-9. https://doi.org/10.1186/s12934-017-0850-2
  6. Ryan MP, Walsh G. 2016. The biotechnological potential of whey. Rev. Environ. Sci. Biotechnol. 15: 479-498. https://doi.org/10.1007/s11157-016-9402-1
  7. Veeravalli SS, Mathews AP. 2018. Exploitation of acid-tolerant microbial species for the utilization of low-cost whey in the production of acetic acid and propylene glycol. Appl. Microbiol. Biotechnol. 102: 8023-8033. https://doi.org/10.1007/s00253-018-9174-3
  8. Chalermthai B, Chan WY, Bastidas-Oyanedel JR, Taher H, Olsen BD, Schmidt JE. 2019. Preparation and characterization of whey protein-based polymers produced from residual dairy streams. Polymers (Basel) 11: 1-11. https://doi.org/10.3390/polym11010001
  9. Bolarinwa IF, Orfila C, Morgan MRA. 2015. Determination of amygdalin in apple seeds, fresh apples and processed apple juices. Food Chem. 170: 437-442. https://doi.org/10.1016/j.foodchem.2014.08.083
  10. Bravo S, Morales M, del Monaco SM, Caballero AC. 2019. Apple bagasse as a substrate for the propagation of Patagonian wine yeast biomass. J. Appl. Microbiol. 126: 1414-1425. https://doi.org/10.1111/jam.14216
  11. Bustos G, Moldes AB, Cruz JM, Dominguez JM. 2004. Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinification lees as nutrients. J. Agric. Food Chem. 52: 801-808. https://doi.org/10.1021/jf030429k
  12. Pessione A, Zapponi M, Mandili G, Fattori P, Mangiapane E, Mazzoli R, et al. 2014. Enantioselective lactic acid production by an Enterococcus faecium strain showing potential in agro-industrial waste bioconversion: physiological and proteomic studies. J. Biotechnol. 173: 31-40. https://doi.org/10.1016/j.jbiotec.2014.01.014
  13. Wang Y, Tashiro Y, Sonomoto K. 2015. Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J. Biosci. Bioeng. 119: 10-18. https://doi.org/10.1016/j.jbiosc.2014.06.003
  14. Ruthu, Murthy PS, Rai AK, Bhaskar N. 2014 Fermentative recovery of lipids and proteins from freshwater fish head waste with reference to antimicrobial and antioxidant properties of protein hydrolysate. J. Food Sci. Technol. 51: 1884-1892. https://doi.org/10.1007/s13197-012-0730-z
  15. Bartkiene E, Lele V, Sakiene V, Zavistanaviciute P, Ruzauskas M, Bernatoniene J, et al. 2019. Improvement of the antimicrobial activity of lactic acid bacteria in combination with berries/fruits and dairy industry by-products. J. Sci. Food Agric. 99: 3992-4002. https://doi.org/10.1002/jsfa.9625
  16. Worsztynowicz P, Bialas W, Grajek W. 2020. Integrated approach for obtaining bioactive peptides from whey proteins hydrolysed using a new proteolytic lactic acid bacteria. Food Chem. 312: 126035. https://doi.org/10.1016/j.foodchem.2019.126035
  17. Kasmi M, Hamdi M, Trabelsi L. 2017. Processed milk waste recycling via thermal pretreatment and lactic acid bacteria fermentation. Environ. Sci. Pollut. Res. 24: 13604-13613. https://doi.org/10.1007/s11356-017-8932-6
  18. Gullon B, Yanez R, Alonso JL, Parajo JC. 2008. l-Lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresour. Technol. 99: 308-319. https://doi.org/10.1016/j.biortech.2006.12.018
  19. dos Santos Mathias TR, Alexandre VMF, Cammarota MC, de Mello PPM, Servulo EFC. 2015. Characterization and determination of brewer's solid wastes composition. J. Inst. Brew. 121: 400-404. https://doi.org/10.1002/jib.229
  20. Leroy F, De Winter T, Adriany T, Neysens P, De Vuyst L. 2006. Sugars relevant for sourdough fermentation stimulate growth of and bacteriocin production by Lactobacillus amylovorus DCE 471. Int. J. Food Microbiol. 112: 102-111. https://doi.org/10.1016/j.ijfoodmicro.2006.05.016
  21. Castillo-Castillo Y, Ruiz-Barrera O, Burrola-Barraza ME, Marrero-Rodriguez Y, Salinas-Chavira J, Angulo-Montoya C, et al. 2016. Isolation and characterization of yeasts from fermented apple bagasse as additives for ruminant feeding. Brazilian J. Microbiol. 47: 889-895. https://doi.org/10.1016/j.bjm.2016.07.020
  22. Linares-Morales JR, Cuellar-Nevarez GE, Rivera-Chavira BE, Gutierrez-Mendez N, Perez-Vega SB, Nevarez-Moorillon GV. 2020. Selection of lactic acid bacteria isolated from fresh fruits and vegetables based on their antimicrobial and enzymatic activities. Foods 9: 1399. https://doi.org/10.3390/foods9101399
  23. Association of Official Analytical Chemists, Official Methods of Analysis. 2000 17th Ed., AOAC International, Gaithersburg, MD.
  24. Miller G. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  25. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  26. Zhang M, Wang X, Cui M, Wang Y, Jiao Z, Tan Z. 2018. Ensilage of oats and wheatgrass under natural alpine climatic conditions by indigenous lactic acid bacteria species isolated from high-cold areas. PLoS One 13: e0192368. https://doi.org/10.1371/journal.pone.0192368
  27. Vazquez JA, Gonzalez MP, Murado MA. 2004. Peptones from autohydrolysed fish viscera for nisin and pediocin production. J. Biotechnol. 112: 299-311. https://doi.org/10.1016/j.jbiotec.2004.04.011
  28. Mamma D, Topakas E, Vafiadi C, Christakopoulos P. 2009. Biotechnological Potential of Fruit Processing Industry Residues. In Singh nee' Nigam P, Pandey A. (eds) Biotechnology for Agro-Industrial Residues Utilisation. Springer, Dordrecht.
  29. Filannino P, Di Cagno R, Gobbetti M. 2018. Metabolic and functional paths of lactic acid bacteria in plant foods: get out of the labyrinth. Curr. Opin. Biotechnol. 49: 64-72. https://doi.org/10.1016/j.copbio.2017.07.016
  30. Kafilzadeh F, Heidary N. 2013. Chemical composition, in vitro digestibility and kinetics of fermentation of whole-crop forage from 18 different varieties of oat (Avena sativa L.). J. Appl. Anim. Res. 41: 61-68. https://doi.org/10.1080/09712119.2012.739084
  31. Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ. 2010. The proteolytic system of lactic acid bacteria revisited?: a genomic comparison. BMC Genomics 11: 36. https://doi.org/10.1186/1471-2164-11-36
  32. Nediani M, Garcia L, Saavedra L, Martinez S, Lopez Alzogaray S, Fadda S. 2017. Adding value to goat meat: biochemical and technological characterization of autochthonous lactic acid bacteria to achieve high-quality fermented sausages. Microorganisms 5: 26. https://doi.org/10.3390/microorganisms5020026
  33. Metsoviti M, Paramithiotis S, Drosinos EH, Skandamis PN, Galiotou-Panayotou M, Papanikolaou S. 2011. Biotechnological valorization of low-cost sugar-based media for bacteriocin production by Leuconostoc mesenteroides E131. N. Biotechnol. 28: 600-609. https://doi.org/10.1016/j.nbt.2011.03.004
  34. Wulijideligen, Asahina T, Hara K, Arakawa K, Nakano H, Miyamoto T. 2012. Production of bacteriocin by Leuconostoc mesenteroides 406 isolated from Mongolian fermented mare's milk, airag. Anim. Sci. J. 83: 704-711. https://doi.org/10.1111/j.1740-0929.2012.01010.x
  35. Vera Pingitore E, Todorov SD, Sesma F, Gombossy de Melo Franco BD. 2012. Application of bacteriocinogenic Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch in the control of Listeria monocytogenes in fresh Minas cheese. Food Microbiol. 32: 38-47. https://doi.org/10.1016/j.fm.2012.04.005
  36. Theolier J, Hammami R, Labelle P, Fliss I, Jean J. 2013. Isolation and identification of antimicrobial peptides derived by peptic cleavage of whey protein isolate. J. Funct. Foods 5: 706-714. https://doi.org/10.1016/j.jff.2013.01.014