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Introduction
Lung and liver cancers are included in the top 10 leading causes of cancer death in both men and women

worldwide. Lung cancer is the first-leading cause of cancer death, while liver cancer is the most rapidly increasing
cancer in the United States [1, 2]. Although the death rate for lung cancer has decreased over the years, the survival
rate for regional and distant cancer stages is only 28 and 4%, respectively. Since early detection and therapeutic
monoclonal antibody therapy-specific cancer surface protein have been shown to reduce the mortality of both
lung and liver cancer, identification of the genes encoding the surface proteins explicitly expressed in lung or liver
cancer tissue is critical for the development of new diagnosis strategies as well as novel therapeutics [3-9].

The decrease in sequencing cost and the advancement of new mRNA sequencing technology have led to an
increase in mRNA sequencing data about various cancer tissues in the domains of genetics and genomics.
Multiple algorithms and tools can be used efficiently to align and quantify these sequencing data to genomic
features such as genes and transcripts. Initially, the algorithms used to map sequence reads to reference
transcriptome were based on hash tables [10], then a rise in aligner tools whose algorithm is based on the Burrows-
Wheeler transform (BWT) [11] has been observed. This rise was due to BWT being computationally efficient and
combined with a Full-text Minute (FM) index causing reduced memory usage.  Based on our reference [12, 13],
which compares different BWT tools (Bowtie2 [14], HISAT2 [15], BWA [16]), we selected Bowtie2 since it was the
most robust and used the least memory in the real dataset (HISAT2 used the least memory in the simulated
dataset). STAR [17] is another popular alignment tool but is infamous for memory consumption [18]. In our
manuscript, we also consider runtime and memory utilization, which could affect hardware requirements. Both
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Bowtie2 and Kallisto are known to have a small memory bandwidth. The selection of aligner tools is essential for
the final analysis of the new biomarker specific to lung/liver cancer tissue. The output of the alignment could be
dependent on the read length, read quality, and other factors. Depending on the scale of the project, it may not be
efficient to add quality control measures at multiple levels. The new tool, like Kallisto, uses pseudo alignment
exercising the de Bruijn graph and becomes popular due to their shallow alignment time and low memory usage.

Our initial analysis is based on simulated data to show which tool could align with high TPM values to unique
transcripts. For the actual experiment data, we used mRNA sequencing data about lung cancer tissue, the
evaluation of these two tools, one based on BWT (Bowtie2) and the other on the de Bruijn graph [19] (Kallisto
[20]). We attempted a comparison of their transcript TPM values. The evaluation was attributed to the fact that no
prior custom quality control was added. 

Taking our results together, a quick alignment favors the output of Kallisto since it has inbuilt quality control,
and the Kallisto tool is better for getting faster results more accurately than Bowtie2. In the case of simulated data,
Kallisto was able to detect unique transcripts with high TPM values. These results were confirmed using mRNA
sequencing data about liver cancer cells and the known liver cancer-specific biomarkers. 

Materials and Methods
Dataset

The simulated mRNA sequencing data were generated using the DWGSIM tool. The sequencing data generated
was 1 million base pairs in length, taking 100 base pairs at a time in a paired end-setting. The simulated data were
based on the Illumina device using the tool settings to get similar output to the cancer data used later. The output
fastq files were then processed with Kallisto or Bowtie2 to get TPM values. In the case of Kallisto, the TPM values
were directly generated. For Bowtie2, the read counts were prepared using the featureCounts function available in
Rsubread [21] package in R, and the output of feature counts is saved with the transcript length. Both of these
values were then used to compute the TPM value as shown in the Methods section. 

For actual cancer data, mRNA sequencing data for lung and liver cancer tissue and the corresponding normal
tissue were downloaded from Sequence Read Archive (SRA) [22]. mRNA was sequenced using Illumina Hiseq
2000 in a paired end-setting at 100bp. The mRNA sequencing raw data were prepared using parallel-fastq-dump
with a split file parameter in paired-end reads. The fastq files were processed in the same process as with the
simulated data.

Bowtie2 (Burrows-Wheeler Transform)
Initially, the sequence alignment was done based on hash tables. Hash tables have high computation power and

long run times, which has led to an increase in the use of more efficient algorithms like BWT. The BWT algorithm
creates a suffix array with the transcript, which is lexicographically sorted. BWT stores the last column as the
prefix tree of the genome.

Bowtie2 utilizes a BWT backtracking strategy to perform a depth-first search through the suffix trie that holds
all suffixes of the reference transcriptome. It matches the first alignment that satisfies specific criteria found.
Bowtie2 tool was used to process the downloaded sequence fastq file. The Bowtie2 index was built using the
human hg38 reference transcriptome from ensemble reference transcriptomes (https://uswest.ensembl.org/info /
data/ftp/index.html) using default settings. The raw fastq files were processed using the Bowtie2 tool with the
parameter to align for paired-end reads. The SAM file with a hg38 genomic annotation file was available from
(https://github.com/pachterlab/kallisto-transcriptome -indices/releases) homo sapiens annotation folder, and
feature counts function available in Rsubread package in R. To get the required output as transcripts, feature
counts require additional parameters. The additional parameters used for feature counts were, GTF
AnnotationFile set as TRUE, isPairedEnd set as TRUE, GTF attrType set as "transcript id". The transcript level
read counts were generated, which was further processed to get transcript level TPM values in python.
Additionally, this process was tried in a local mode setting where soft clipping to the reads before aligning is done.

Kallisto (de Bruijn Graph) 
Aligner tools are used to align the sequence reads to a reference genome or transcriptome database. Kallisto is

an aligner that uses de Bruijn graphs to construct its index and makes a pseudo alignment on this graph to quickly
align the sequence to the transcriptome during the alignment phase.

For alignment, the tool requires an index that associates the sequence reads to the gene/transcript. In the case of

Fig. 1. De Bruijn graph is a directed graph with overlapping nodes, where the nodes are k-mers. As an example,
here we have 3 different transcripts, shown by color. 
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Kallisto, the de Bruijn graph was used to build the index. Each node in the graph represents k-mers, the sequences
of base pairs, as seen in Fig. 1. During the alignment to the transcriptome, Kallisto does a pseudo-alignment; if
connected nodes have the same k-compatibility class, it skips those until the value of the k-compatibility class
changes, as seen in Fig. 2. By default, Kallisto makes the index with a k-mer size of 31. If the base pair read length is
lower than 31, the index must be built with the appropriate k-mer size.

Kallisto provides the prebuilt indexes based on the hg38 human reference transcriptome. Kallisto quant was
used to quantify the abundance of transcripts. The index file, output folder, and raw file need to be built to be
processed. In the case of paired-end reads, both raw files should be given. Three files in the output folder were
prepared, but mainly the abundance.tsv file, which holds the transcripts TPM values, was examined. Kallisto was
used to process all the fastq files with an index file. The prebuilt index was downloaded from the Kallisto manual
(https://pachterlab.github.io/kallisto/manual) and built on the same ensemble reference transcriptome used by
Bowtie2. This index is created on a 31 k-mer length, which is the default. Additional parameters of paired-end
reads were added, and both paired files were processed together. Kallisto directly gave the transcript TPM values
from raw fastq files. The output abundance.tsv was taken into python for further analysis and comparison with
Bowtie2’s output.

Cosine Similarity 
Cosine similarity measures the similarity between two vectors by calculating the angle θ between them (Fig. 3).

Given two vectors A and B, the similarity can be calculated by their dot product and magnitude as given with
Eq. (1):

(1)

A value of 1 signifies complete similarity, while that of –1 shows they are entirely dissimilar. Cosine similarity
between the standard transcript TPM values was used. For Kallisto, the tool directly outputs in transcript-TPM
values, and in the case of Bowtie2, the output was processed through R and python.

Transcripts Per Kilobase Million
The TPM value was used to normalize the reads counts by normalizing for gene length first and then

normalizing for sequencing depth.
To calculate TPM:
1. Divide the length of each transcript into kilobases. This gives us the reads per kilobase (RPK)

θ( )cos A B⋅
A B-----------

Σi 1=
n AiBi

Σi 1=
n Ai

2
Σi 1=

n Bi
2

---------------------------------------= =

Fig. 2. Pseudoalignment is when the matching skips similar k-compatibility classes. Since the k-compatibility
class value is the same, those transcripts share similar sequences. So, the algorithm skips the similar nodes for efficiency.

Fig. 3.Cosine similarity between 2 items is the θ angle between the items.
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2. Sum up all the RPM values and divide this by 1,000,000. This gives us the “per million” scaling factor.
3. Divide the RPK values by the per million scaling factors to get TPM values for the transcript.

DWGSIM
DWGSIM is a whole genome simulator for next-generation sequencing technologies. The tool DWGSIM was

used to generate the simulated sequencing data. The tool can be downloaded from the Linux terminal using ‘apt-
get dwgsim’ or downloaded from GitHub (https://github.com/nh13/DWGSIM).

Filtering the Genes Encoding the Plasma Membrane Protein 
The location of the proteins encoded by the candidate genes inside the cells was analyzed by Gene Cards. The

information about gene ID, functional description, location in the genome, and intracellular localization are
provided by Gene Cards (https://www.genecards.org/). Eleven intracellular location codes such as plasma
membrane, extracellular space, lysosome, cytoskeleton, endosome, Golgi apparatus, mitochondrion, peroxisome,
endoplasmic reticulum, cytosol, nucleus, and 0-5 possibility score are assigned to the gene. The genes with a score
of 4 or 5 of plasma membrane value were selected to filter out the gene encoding the plasma membrane protein. 

Validation Process
To validate our claims, the TPM values in a comparative way (highly expressed transcripts in one tool and not

the other) were individually examined to validate which tool is better equipped to directly give close to accurate
results. For example, if a transcript is highly expressed in the given tumor tissue, it was evaluated as to which tool
was more accurate in aligning high fold change for that transcript. In lung cancer tissue, the candidate transcripts
were analyzed to match known biomarkers such as CA9, GPR87, CA12, etc.

Further confirmation of the above process was made with mRNA sequencing data about liver cancer tissue and
the known biomarkers specific to liver cancer, such as PROM1, CD44, ITGA6, etc. Additionally, the analysis was
also performed to check any relation between the subcellular localization and the alignment of biomarkers. The
localization was taken from uniport and cross-validated with genecards.org. Some of the known biomarkers have
localization scores for the plasma membrane as 4. These biomarkers were also added to the evaluation list.

Data Availability 
Raw sequencing data are publicly available through the GEO database (GSE70089).

Results
For our overall workflow, each tool has its pipeline. Our objective was to compare the final expression values

derived from both tools using the duplicate input files. Both tools are run on the same system to make the
comparisons fair. The simulated and provided input files are in Fastq format. Fastq format is a text format for
biological sequences and their quality score. Both tools use the same input raw files but have separate pipelines, as

Fig. 4. Process architecture for Kallisto and Bowtie2 for the alignment of transcripts and calculation of TPM
values. The pipeline on top shows the input, process, and output for Kallisto. Since no additional steps are being carried out by
us, the pipeline is direct. In case of Bowtie2, the tool does not directly give the output as transcript TPM values, so we added an
additional R process to handle the transcript read counts and TPM conversion to convert the expression levels to TPM.
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shown in Fig. 4. Separate pipelines are required since the output of both tools is different, but to make our
comparison, we needed to process both the tool outputs to the required transcript TPM data. The same human
reference transcriptome was used to build the indexes for both tools to maintain consistency for comparison.
Bowtie2 has additional steps to get the TPM value as the alignment produces a SAM output. The SAM file received
from Bowtie2 was processed in R to get the read counts, further processed in python to get the TPM values.
Kallisto directly gives the output in transcript TPM values. Once the final TPM values were obtained from both
pipelines, the analysis was done in python. The TPM values are analyzed based on their alignment rate, the
number of transcripts aligned, and in the case of cancer cells, we check how many known cancer biomarkers the
tools could align.

Generation of TPM Values from Simulated Sequencing Data
Before we analyzed the actual cancer data, we ran both tools on simulated sequencing data to analyze their

outputs. The tool DWGSIM was used to generate raw sequencing reads in a paired- end setting. The option for
generating simulated reads from Illumina was selected to closely resemble the reads generated from the cancer
data since they were processed on an Illumina device. A genome sequence of 1 million nucleotides with 100bp
reads and 10 million nucleotides with 100 bp were generated. The output of this process yielded two fastq files
since it was in a paired-end setting. Genome sequences of different lengths were generated to check whether the
results were consistent with longer sequences.

The fastq files were initially processed with Bowtie2. The output of Bowtie2 for the simulated data gave a SAM
file which was processed in R to get the expression levels. Since we compare the TPM values, the expression levels
are converted to TPM values in python.

For the genome sequence with a length of 1 million reads, the two fastq files generated are processed using the
tool Kallisto. Since Kallisto directly gives output in TPM, no further processing is required. Bowtie2 was able to
align to 41388 transcripts while Kallisto aligned 110762 transcripts. There were 39972 transcripts present in both
outputs. Total unique transcripts aligned were 112128. The cosine similarity between TPM values of common
transcripts was 79.2%. 

Since our interest lies in discovering genes or transcripts with high expression changes, we look at the top
expressed transcripts taken from both tools and compare them to one another. The top 1000 transcripts ordered
by TPM values in descending order of Bowtie2 were accepted. We observed that all 1000 transcripts were also
aligned with Kallisto. The cosine similarity between them was 98.9%. Next, the top 1000 transcripts in descending
order of TPM values for Kallisto were taken. Here, we observed that only 12 from these 1000 transcripts were
aligned with the Bowtie2 tool. Based on this analysis, it was observed that Kallisto also aligned transcripts with
high TPM values from Bowtie2, but many transcripts having high TPM values from Kallisto were not aligned by
Bowtie2. 

To check for consistency, we simulated sequencing data with higher read counts. The same process was followed
for the genome sequence of 10 million reads. Bowtie2 aligned to 41388 transcripts, while Kallisto aligned to
134811 transcripts. Common transcripts from both tools were 40501. There were 135648 unique combined
transcripts when taking individual transcripts from both tools. The cosine similarity between the TPM values of
both tools was 76.28%.

Like the genome analysis with 1 million reads, the top 1000 TPM values ordered by both the tools were
compared for 10 million reads. We observe that the top 1000 transcripts from Bowtie2 based on TPM value were
present in Kallisto, but the top 1000 from Kallisto were not present in Bowtie2. The counts of aligned transcripts
are given in Table 1.

This observation shows Kallisto has better transcript alignment since it could align to more unique transcripts
with high TPM values and is more helpful in discovering novel unique biomarkers.

Generation of TPM Values for Lung Cancer Tissue mRNA Using Bowtie2
Evaluation of both tools on actual data is required since simulated data do not accurately represent the

significance of finding highly expressed genes. For this, we look at lung cancer sequencing data. To get TPM values
for the transcripts, the sequence data need to be aligned to the transcripts. Bowtie2 was used to make the
alignment. The sequence read files were downloaded from SRA using the fastq-dump tool recommended on the
NCBI website. We got two separate fastq files for every sample as the reads were processed on the Illumina
platform with a paired-end reads layout. The fastq file was processed with Bowtie2. The output of this process
yielded a SAM file with an approximate 85% alignment rate. On average, it took Bowtie2 125 minutes to make the
alignments. The SAM file was processed in R to get the expression levels using the function featureCounts
available in the package Rsubread. Additional parameters were used with feature counts to add the hg38

Table 1. Comparison of transcripts aligned by both tools taking the same simulated sequencing data of 1M
and 10M nucleotide lengths.a

Tool Transcripts aligned (1M reads) Transcripts aligned (10M reads)
Kallisto 110762 134811
Bowtie2 41388 41388
Unique 112128 135648

aUnique values are taken by combining transcripts aligned by both tools and removing duplicate transcripts.
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annotation file and attribute type as transcript id to give output in terms of transcripts (the default is genes). The
final output was written to a CSV file, which was further processed in python. The TPM value calculation is
mentioned in the Methods section. TPM values were also calculated by running Bowtie2 in local mode, which
clips the reads. A similarity score of 0.9993 was obtained between clipped and non-clipped reads. In further
analysis, the non-clipped reads data were used without the local parameter to adhere to default parameters to
compare both tools.

Alignment of Lung Cancer Tissue mRNA Using Kallisto
The lung cancer sequencing data were also processed using Kallisto. Kallisto takes in the fastq files and directly

gives the output in transcript TPM values. To analyze the cancer cell data, which is in a nucleotide sequence
format, it is necessary to align them to the human reference transcriptome. On average, the Kallisto process
aligned the transcripts and calculated their TPM values in 6 min and with an approximately 87.3% alignment rate.
Based on performance, Kallisto aligned to more transcripts and took significantly less time to run. We also
observed that Kallisto was able to align with more transcripts.

Filtering the Surface Protein-Encoding mRNA from the Lung Cancer Cells
To evaluate which tool is better suited for finding marker genes, we cross-checked the results with known

surface markers and how well the tools were able to detect them from the cancer data. The plasma membrane
proteins present on the surface of lung cancer cells are valuable targets for the development of monoclonal
antibodies (mAb), which are known to be the most effective reagent for clinical application and basic mechanism
study. The technologies and protocols for the generation and large-scale production of mAb have been well
established. The database to localize the protein encoded by the gene in the cells was downloaded from
genecards.org. Based on the intracellular localization of the protein encoded by the gene, the genes with high value
for plasma membrane were filtered. The genes such as CA9, CA12, KIT, THY1, and others, as shown in Table 2,
which was reported to encode the lung cancer cell-specific surface protein, were included in the biomarker genes,
implying that our strategy to identify the novel gene specifically expressed in lung cancer cells was legitimate.

Comparison of the Transcripts Aligned by Both Tools
Next, we looked at analyzing the TPM values obtained from both tools. This gives an insight as to which tool

provides a better outcome in terms of transcripts. In all cases, Kallisto was able to align to more distinct transcripts
with very low TPM values. This could be an advantage depending on the case of the project for which the
alignment was made. (But in our case, since the fold change was used, Kallisto fold-change values became
exponentially higher than that of Bowtie2). TPM values from both outputs were taken and compared in python,
revealing that 34897 transcripts were common in both outcomes. The cosine similarity between both the outputs
lay at 0.896 in lung cancer cells and 0.672 for normal lung cells. The cosine similarity showed that for both tools,
the transcripts were similarly expressed.

In the case of analyzing multiple samples, comparison was made by taking common transcripts using inner
joins or taking all transcripts by using the outer join of all processed files. Many transcripts aligned from tumor
and non-tumor cells were compared. The counts of transcripts for tumor or non-tumor cells among the tools were
compared by taking common transcripts among the multiple cell samples, as shown in Table 3. There was an
overlap of 86.4% of transcripts between the tumor and non-tumor data for Kallisto and 86.3% overlap for Bowtie2.
Also, 43.6% of transcripts (common from both tumor and non-tumor) of Kallisto were present in Bowtie2
transcripts. 

The counts for all transcripts were also compared, which included the unique transcripts aligned in the
individual cell samples, as shown in Table 4. The common transcripts were calculated by taking inner joins
between tumor and non-tumor, while unique transcript count was calculated using a full outer join. The data were

Table 2. Biomarker genes specific to lung cancer cells.
Biomarker Ensembl gene ID Transcript count Localization Localization score
CA9 ENSG00000107159 4 Plasma membrane, nucleus 5,4
CA12 ENSG00000074410 6 Plasma membrane 5
CT83 ENSG00000204019 1 Plasma membrane 4
DSG3 ENSG00000134757 1 Plasma membrane 5
FAT2 ENSG00000086570 2 Plasma membrane, golgi 4,3
GPR87 ENSG00000138271 2 Plasma membrane 4
KISS1R ENSG00000116014 3 Plasma membrane 5
LYPD3 ENSG00000124466 4 Plasma membrane, extracellular 5,5
SLC7A11 ENSG00000151012 2 Plasma membrane 5
TMPRSS4 ENSG00000137648 20 Plasma membrane 4
PROM1 ENSG00000007062 20 Plasma membrane, extracellular 5,5
PLAUR ENSG00000011422 16 Plasma membrane, extracellular 5,5
KIT ENSG00000157404 4 Plasma membrane 5
ABCG2 ENSG00000118777 5 Plasma membrane, nucleus 5,5
THY1 ENSG00000154096 10 Plasma membrane 5
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split based on the tool used and cell type. By taking all aligned transcripts and comparing them to common
transcripts among the cells, many transcripts were observed to be uniquely aligned for the individual cells. The
data were ordered by TPM value in descending order for both tools and plotted to a graph.

We observed that Kallisto could align a lot more transcripts in all cases. Most of these different transcripts had a
lower value. As shown in Figs. 5 and 6, TPM values were ordered in descending values for both tools in the case of
tumor cells and non-tumor cells. Based on this, it was noted that some highly expressed transcripts in Kallisto were
not represented in transcripts processed by Bowtie2.

Integrative Analysis of Known Lung Cancer Biomarkers Using Both Tools 
To analyze which tool better aligns the genes to the known set of biomarkers for lung cancer, further analysis was

done on the processed files, and the fold change of the transcript TPM values was compared. First, the transcripts
associated with the biomarker genes were filtered. The number of filtered transcripts is shown in Table 5. Since
there were multiple tumor and non-tumor cell samples, the average value of lung cancer cell and non-cancer cell
TPM output was taken, and their fold change was calculated accordingly. The assessment was made by
considering FC > 2 as being highly expressed. If any single transcript for the biomarker gene satisfied this
condition, it was noted that the gene is highly expressed. In case the gene is highly expressed using the tool, it was
denoted with ‘Y.’ If the conditions were not matched, it was marked with ‘N.’ In case there were no transcripts
aligned for the biomarker, it was denoted by ‘ –’. Biomarkers were assessed with these conditions, as shown in
Table 6.

Table 3. Comparison of the number of transcripts that were aligned for both tools by taking common
transcripts of lung cancer.a

Tool Tumor cell Non-tumor cell Common
Kallisto 91940 92420 79924
 Bowtie2 54743 55485 47924

    Common 41041 41301 34897
aCommon transcripts are transcripts aligned in both sets. 

Table 4. Comparison of the number of transcripts for both tools by taking all transcripts that were aligned of
lung cancer.a

Tool Tumor cell Non-tumor cell Unique
Kallisto 141830 139623 153435
 Bowtie2 90468 88317 100156
Unique 163291 160578 176859

aUnique values are taken by combining transcripts aligned by both tools and removing duplicate transcripts.

Fig. 5. Comparison of top 100 TPM values of tumor cells taken in ascending order by the tools to show if
Bowtie2 can align the top 100 from Kallisto and vice versa.
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For most of the biomarkers, both tools gave high TPM values. In some cases where Bowtie2 could not align any
transcripts associated with the biomarker gene, Kallisto could align those transcripts. Based on the criteria to show
which tool could align the biomarker correctly, Kallisto got 11 biomarkers while Bowtie2 got nine biomarkers. The
subcellular localization of the proteins encoded by the genes was also considered. We found that high fold change
values were obtained for both tools. As observed in this study, Kallisto could align more transcripts for the
biomarkers specific to lung cancer. For most of the biomarkers, Kallisto aligned multiple transcripts to the gene.
For example, in the gene TMPRSS4, Bowtie2 aligned it to 1 transcript while Kallisto aligned it to 4 transcripts.

Confirmation of Our Results by Using the Known Biomarkers Specific to Liver Cancer
To confirm the results of our study using the data about lung cancer and lung cancer-specific surface

Fig. 6. Comparison of top 100 TPM values of non-tumor cells taken in ascending order by the tools to show if
Bowtie2 can align the top 100 from Kallisto and vice versa.

Table 5. Lung cancer biomarker transcripts aligned count using both tools. 
Tool Transcripts aligned Transcripts filtered

Kallisto 126 66
 Bowtie2 57 23

     Commona 57 22
aTranscripts aligned by both tools.

Table 6. Evaluation of both tools on how correctly they can align to lung biomarker genes.
Biomarker Bowtie2 Kallisto
CA9 - Y
CA12 Y Y
CT83 Y Y
DSG3 N N
FAT2 N N
GPR87 Y Y
KISS1R Y Y
LYPD3 Y Y
SLC7A11 Y Y
TMPRSS4 Y Y
PROM1 - Y
PLAUR N N
KIT Y Y
ABCG2 N N
THY1 Y Y
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biomarkers, additional mRNA sequencing data related to liver cancer cells and normal liver cells were processed.
The raw fastq files were downloaded from SRA (accession numbers provided in data availability statement). The
fastq-dump tool was used to download the data from SRA with a split function, which divides the data into two
files sequenced in a paired-end layout. Three samples of liver cancer cells and three samples of normal liver cells
were downloaded for analysis for liver cancer data. Bowtie2 gave an average alignment rate of 85.95% for liver
cancer cells and 83.15% for normal liver cells. The SAM file was further processed in R to get the read counts with
function feature counts available in the Rsubread package. Additional parameters to use external hg38 annotation
file and output as transcripts were added. Kallisto gave an average alignment rate of 86.5% for liver cancer cells and
91.2% for normal liver cells. 

The counts were compared for the liver cancer data. When taking inner join with both tumor and non-tumor
for Kallisto, 82.6% of transcripts were common while Bowtie2 has a 79% overlap. The count comparison of liver
cancer data is shown in Table 7 (only common transcripts from all cells) and Table 8 (unique transcripts among all
cells).

It was observed that Kallisto aligns with more transcripts for liver cancer, as seen with lung cancer data. The
known biomarkers specific to liver cancer cells are shown in Table 7. Table 8 and Table 9 showed the number of
transcripts aligned by both tools taking unique transcripts across the samples and total transcripts across the
samples, respectively. Consistent with the lung cancer case results, as shown in Table 10, Kallisto aligned more
transcripts for liver cancer data as well. The biomarker gene SALL4, which is localized in the nucleus, had a low
fold change value. Table 11 shows a comparison of the tools in finding the biomarkers based on high fold change.
Transcripts aligned with Kallisto gave six biomarkers, while Bowtie2 produced only two biomarkers. Also,
Bowtie2 was unable to align any transcript to the biomarker CD24.

Consistent with the results from mRNA sequencing data about lung cancer cells and their specific genes
encoding the surface proteins, Kallisto was demonstrated to perform better than Bowtie2 in aligning transcripts
related to the liver biomarker genes and aligns more transcripts for the biomarker genes than Bowtie2.

Table 7. Biomarker genes specific for liver cancer.
Biomarker Ensembl gene ID Transcript Count Localization Localization score

PROM1 ENSG00000007062 20 Plasma membrane, extracellular 5,5
CD44 ENSG00000026508 39 Plasma membrane 5
ITGA6 ENSG00000091409 2 Plasma membrane 5
THY1 ENSG00000154096 10 Plasma membrane 5
ANPEP ENSG00000166825 9 Plasma membrane 5
EPCAM ENSG00000119888 6 Plasma membrane, extracellular 5,4
ABCG2 ENSG00000118777 5 Plasma membrane, nucleus 5,5
CD24 ENSG00000272398 8 Plasma membrane 5
SALL4 ENSG00000101115 5 Nucleus 5
ICAM1 ENSG00000090339 5 Plasma membrane 5

Table 8. Comparison of the number of transcripts that were aligned for both tools by taking common
transcripts of liver cancer.a

Tool Tumor cell Non-tumor cell Common
Kallisto 83351 79634 68901
 Bowtie2 49201 45114 39131

    Common 37055 33573 29127
aCommon transcripts are transcripts aligned in both sets.

Table 10. Biomarker transcripts aligned with both tools for liver cancer tumor and non-tumor cells together.a

Tool Transcripts aligned Transcripts filtered
Kallisto 97 51
 Bowtie2 41 16

    Common 40 16
aCommon transcripts are transcripts aligned in both sets.

Table 9. Comparison of the number of transcripts for both tools by taking all transcripts that were aligned
with liver cancer.a

Tool Tumor cell Non-tumor cell Common
Kallisto 137284 132227 148301
 Bowtie2 86160 79131 93328

    Common 157678 150915 170002
aUnique values are taken by combining transcripts aligned by both tools and removing duplicate transcripts.
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Discussion 
Alignment tools are essential in biomedical strategy to quantify mRNA sequence data and identify the novel

genes specifically expressed in the target cells. This study compared two different alignment tools that use
different underlying algorithms for aligning biological sequence data. Bowtie2 is an alignment tool based on the
Burrows-Wheeler transform, while Kallisto makes its alignment based on the de Bruijn graph algorithm.

The initial comparison was made by observing both tools' number alignments and TPM values on the
simulated data of 1 million and 10 million reads. Two different read lengths were taken to check for consistency
based on different read lengths. The simulated data settings were kept to closely resemble the raw sequencing
reads generated for the actual cancer data. This was done to make sure similar results could be drawn from both
types of data. Kallisto aligned approximately ~3 times more transcripts than Bowtie2 in the case of the simulated
data. We also observed that Kallisto aligned more unique transcripts with high TPM values than Bowtie2.

For the actual cancer data, our observation was based on the number of transcripts and the time taken for the
tools to make the alignments. Kallisto, on average aligned up to 60% more transcripts than Bowtie2. Kallisto made
these alignments in ~6 min while Bowtie2 took an average of 125 min. In this regard, Kallisto aligned more
transcripts in all cases and did it in significantly less time than Bowtie2. The next part of the evaluation was done
by examining which alignment tool could align better with the known biomarkers specific to two different cancer
types (lung and liver cancer). A set of tumor and non-tumor tissues from lung cancer patients was used to
determine which tool could select the transcripts expressed more in the cancer tissue cells by fold change. From
this, it was observed that Kallisto had a higher fold change value for most of the biomarker transcripts. This result
was further validated using tumor and non-tumor liver cancer tissues, where Kallisto again produced better
results. It was also noted that there were some biomarkers to which Bowtie2 failed to align any transcript, but
Kallisto could. 

There are many technical features during sequence reads that may complicate running and getting accurate
results directly with the aligner tools. Out of the box, Kallisto is seen to get better results with minimum
interference from the user. In this case, the interference includes a separate tool/script for quality control of the
biomedical sequence data. This difference in TPM/read counts between Kallisto and Bowtie2 could be accounted
for by Kallisto having bias correction inbuilt, which acts as quality control. Based on comparing the known
biomarkers and those biomarker TPM values obtained from both tools, it can be concluded that without any
dedicated quality control and on standard settings Kallisto tool is better for getting faster results more accurately.
Therefore, the usage of the Kallisto algorithm is essential to identify the novel genes specifically expressed in the
target cells, which should be the fundamental core asset in developing diagnostic and therapeutic reagents for the
patients.
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