DOI QR코드

DOI QR Code

Selective Homologous Expression of Recombinant Manganese Peroxidase Isozyme of Salt-Tolerant White-Rot Fungus Phlebia sp. MG-60, and Its Salt-Tolerance and Thermostability

  • Kamei, Ichiro (Faculty of Agriculture, University of Miyazaki) ;
  • Tomitaka, Nana (Faculty of Agriculture, University of Miyazaki) ;
  • Motoda, Taichi (Graduate School of Agriculture and Engineering, University of Miyazaki) ;
  • Yamasaki, Yumi (Faculty of Regional Innovation, University of Miyazaki)
  • 투고 : 2021.09.01
  • 심사 : 2021.12.09
  • 발행 : 2022.02.28

초록

Phlebia sp. MG-60 is the salt-tolerant, white-rot fungus which was isolated from a mangrove forest. This fungus expresses three kinds of manganese peroxidase (MGMnP) isozymes, MGMnP1, MGMnP2 and MGMnP3 in low nitrogen medium (LNM) or LNM containing NaCl. To date, there have been no reports on the biochemical salt-tolerance of these MnP isozymes due to the difficulty of purification. In present study, we established forced expression transformants of these three types of MnP isozymes. In addition, the fact that this fungus hardly produces native MnP in a high-nitrogen medium (HNM) was used to perform isozyme-selective expression and simple purification in HNM. The resulting MGMnPs showed high tolerance for NaCl compared with the MnP of Phanerochaete chrysosporium. It was worth noting that high concentration of NaCl (over 200 mM to 1200 mM) can enhance the activity of MGMnP1. Additionally, MGMnP1 showed relatively high thermo tolerance compared with other isozymes. MGMnPs may have evolved to adapt to chloride-rich environments, mangrove forest.

키워드

과제정보

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant no. 21H04740 and 20K21341).

참고문헌

  1. Asemoloye MD, Marchisio MA, Gupta VK, Pecoraro L. 2021. Genome-based engineering of ligninolytic enzyme in fungi. Microb. Cell Fact. 20: 20. https://doi.org/10.1186/s12934-021-01510-9
  2. Hammel KE, Cullen D. 2008. Role of fungal peroxidases in biological ligninolysis. Curr. Opin. Plant Biol. 11: 349-355. https://doi.org/10.1016/j.pbi.2008.02.003
  3. Lundell TK, Makela MR, Hilden K. 2010. Lignin-modifying enzymes in filamentous basidiomycetes - Ecological, functional and phylogenetic review. J. Basic Microbiol. 50: 5-20. https://doi.org/10.1002/jobm.200900338
  4. Wariishi H, Valli K, Gold MH. 1989. Oxidative cleavage of a phenolic diarylpropane lignin model dimer by manganese peroxidase from Phanerochaete chrysosporium. Biochemistry 28: 6017-6023. https://doi.org/10.1021/bi00440a044
  5. Wariishi H, Valli K, Gold MH. 1991. In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 176: 269-275. https://doi.org/10.1016/0006-291X(91)90919-X
  6. Tuor U, Wariishi H, Gold MH, Schoemaker HE. 1992. Oxidation of phenolic arylglycerol β-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium : oxidative cleavage of an α-carbonyl model compound. Biochemistry 31: 4986-4995. https://doi.org/10.1021/bi00136a011
  7. Bao W, Fukushima Y, Jensen Jr. KA, Moen MA, Hammel KE. 1994. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett. 354: 297-300. https://doi.org/10.1016/0014-5793(94)01146-X
  8. Asgher M, Bhatti HN, Ashraf M, Legge RL. 2008. Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19: 771-783. https://doi.org/10.1007/s10532-008-9185-3
  9. Qin X, Zhang J, Zhang X, Yang Y. 2014. Induction, purification and characterization of a novel manganese peroxidase from irpex lacteus CD2 and its application in the decolorization of different types of dye. PLoS One 9: e113282 https://doi.org/10.1371/journal.pone.0113282
  10. Zhang H, Zhang S, He F, Qin X, Zhang X, Yang Y. 2016. Characterization of a manganese peroxidase from white-rot fungus Trametes sp.48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. J. Hazard. Mater. 320: 265-277. https://doi.org/10.1016/j.jhazmat.2016.07.065
  11. Bermek H, Li K, Eriksson KEL. 2002. Studies on mediators of manganese peroxidase for bleaching of wood pulps. Bioresour. Technol. 85: 249-252. https://doi.org/10.1016/S0960-8524(02)00132-3
  12. Hakala TK, Lundell T, Galkin S, Maijala P, Kalkkinen N, Hatakka A. 2005. Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme Microb. Technol. 36: 461-468. https://doi.org/10.1016/j.enzmictec.2004.10.004
  13. Hakala TK, Hilden K, Maijala P, Olsson C, Hatakka A. 2006. Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Appl. Microbiol. Biotechnol. 73: 839-849. https://doi.org/10.1007/s00253-006-0541-0
  14. Li X, Kondo R, Sakai K. 2002. Studies on hypersaline-tolerant white-rot fungi I: screening of lignin-degrading fungi in hypersaline conditions. J. Wood Sci. 48: 147-152. https://doi.org/10.1007/BF00767292
  15. Kamei I, Daikoku C, Tsutsumi Y, Kondo R. 2008. Saline-dependent regulation of manganese peroxidase genes in the hypersaline-tolerant white rot fungus Phlebia sp. strain MG-60. Appl. Environ. Microbiol. 74: 2709-2716. https://doi.org/10.1128/AEM.02257-07
  16. Li X, Kondo R, Sakai K. 2003. Studies on hypersaline-tolerant white-rot fungi III: biobleaching of unbleached kraft pulp by hypersaline-tolerant manganese peroxidase from a marine white rot isolate, Phlebia sp. MG-60. J. Wood Sci. 49: 42-46. https://doi.org/10.1007/s100860300007
  17. Kamei I, Hirota Y, Meguro S. 2012. Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60. Bioresour. Technol. 126: 137-141. https://doi.org/10.1016/j.biortech.2012.09.007
  18. Kamei I, Hirota Y, Mori T, Hirai H, Meguro S, Kondo R. 2012. Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour. Technol. 112: 137-142 https://doi.org/10.1016/j.biortech.2012.02.109
  19. Tri CL, Kamei I. 2020. Butanol production from cellulosic material by anaerobic co-culture of white-rot fungus Phlebia and bacterium Clostridium in consolidated bioprocessing. Bioresour. Technol. 305: 123065. https://doi.org/10.1016/j.biortech.2020.123065
  20. Khuong LD, Kondo R, Leon RD, Anh TK, Meguro S, Shimizu K, et al. 2014. Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60. Bioresour. Technol. 167: 33-40. https://doi.org/10.1016/j.biortech.2014.05.064
  21. Yamasaki Y, Yamaguchi M, Yamagishi K, Hirai H, Kondo R, Kamei I, et al. 2014. Expression of a manganese peroxidase isozyme 2 transgene in the ethanologenic white rot fungus Phlebia sp. strain MG-60. SpringerPlus 3: 699. https://doi.org/10.1186/2193-1801-3-699
  22. Tien M, Kirk TK. 1988. Ligninperoxidase of Phanerochaete chrysosporium. Methods Enzymol. 161: 238-249. https://doi.org/10.1016/0076-6879(88)61025-1
  23. Motoda T, Yamaguchi M, Tsuyama T, Kamei I. 2019. Down-regulation of pyruvate decarboxylase gene of white-rot fungus Phlebia sp. MG-60 modify the metabolism of sugars and productivity of extracellular peroxidase activity. J. Biosci. Bioeng. 127: 66-72. https://doi.org/10.1016/j.jbiosc.2018.06.017
  24. Li X, Kondo R, Sakai K. 2003. Studies on hypersaline-tolerant white-rot fungi IV: effects of Mn2+ and NH4+ on manganese peroxidase production and Poly R-478 decolorization by the marine isolate Phlebia sp. MG-60 under saline conditions. J. Wood Sci. 49: 355-360. https://doi.org/10.1007/s10086-002-0492-8
  25. Keyser P, Kirk TK, Zeikus JG. 1978. Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J. Bacteriol. 135: 790-797. https://doi.org/10.1128/jb.135.3.790-797.1978
  26. Kornfeld R, Kornfeld S. 1985. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54: 631-664. https://doi.org/10.1146/annurev.bi.54.070185.003215
  27. Whitwam RE, Gazarian IG, Tien M. 1995. Expression of fungal MN peroxidase in E. coli, and refolding to yield active enzyme. Biochem. Biophys. Res. Commun. 216: 1013-1017. https://doi.org/10.1006/bbrc.1995.2721
  28. Perez-Boada M, Doyle WA, Ruiz-Duenas FJ, Martinez MJ, Martinez AT, Smith AT. 2002. Expression of Pleurotus eryngii versatile peroxidase in Escherichia coli and optimisation of in vitro folding. Enzyme Microb. Technol. 30: 518-524. https://doi.org/10.1016/S0141-0229(02)00008-X
  29. Si J, Cui BK. 2013. A new fungal peroxidase with alkaline-tolerant, chloride-enhancing activity and dye decolorization capacity. J. Mol. Catal. B Enzym. 89: 6-14. https://doi.org/10.1016/j.molcatb.2012.12.002
  30. Cheng X, Jia R, Li P, Tu S, Zhu Q, Tang W, Li X. 2007. Purification of a new manganese peroxidase of the white-rot fungus Schizophyllum sp. F17, and decolorization of azo dyes by the enzyme. Enzyme Microb. Technol. 41: 258-264. https://doi.org/10.1016/j.enzmictec.2007.01.020
  31. Praveen K, Usha KY, Viswanath B, Rajasekhar Reddy B. 2012. Kinetic properties of manganese peroxidase from the mushroom Stereum ostrea and its ability to decolorize dyes. J. Microbiol. Biotechnol. 22: 1540-1548 https://doi.org/10.4014/jmb.1112.12011
  32. Cai Y, Wu H, Liao X, Ding Y, Sun J, Zhang D. 2010. Purification and characterization of novel manganese peroxidase from Rhizoctonia sp. SYBC-M3. Biotechnol. Bioprocess Eng. 15: 1016-1021. https://doi.org/10.1007/s12257-010-0130-z
  33. Urek RO, Pazarlioglu NK. 2004. Purification and partial characterization of manganese peroxidase from immobilized Phanerochaete chrysosporium. Process Biochem. 39: 2061-2068. https://doi.org/10.1016/j.procbio.2003.10.015
  34. Bouacem K, Rekik H, Jaouadi NZ, Zenati B, Kourdali S, El Hattab M, et al. 2018. Purification and characterization of two novel peroxidases from the dye-decolorizing fungus Bjerkandera adusta strain CX-9. J. Biol. Macromol. 106: 636-646. https://doi.org/10.1016/j.ijbiomac.2017.08.061