DOI QR코드

DOI QR Code

RK-270D and E, Oxindole Derivatives from Streptomyces sp. with Anti-Angiogenic Activity

  • Jang, Jun-Pil (Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jang, Mina (Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Nogawa, Toshihiko (RIKEN Center for Sustainable Research Science) ;
  • Takahashi, Shunji (Natural Products Biosynthesis Research Unit and RIKEN-KRIBB Joint Research Unit, RIKEN Center for Sustainable Research Science) ;
  • Osada, Hiroyuki (RIKEN Center for Sustainable Research Science) ;
  • Ahn, Jong Seog (Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ko, Sung-Kyun (Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jang, Jae-Hyuk (Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2021.10.22
  • Accepted : 2022.01.14
  • Published : 2022.03.28

Abstract

A chemical investigation of a culture extract from Streptomyces sp. RK85-270 led to the isolation and characterization of two new oxindoles, RK-270D (1) and E (2). The structures of 1 and 2 were determined by analyzing spectroscopic and spectrometric data from 1D and 2D NMR and High-resolution electrospray ionization mass spectrometry (HRESIMS) experiments. Compound 1 exhibited anti-angiogenic activities against human umbilical vein endothelial cells (HUVECs) without cytotoxicity. Results of Western blot analysis revealed that 1 inhibits VEGF-induced angiogenesis in the HUVECs via VEGFR2/ p38 MAPK-mediated pathway.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant (2021M3H9A103743912), the KRIBB Research Initiative Program (KGM5292221) funded by the Ministry of Science ICT (MSIT) and the Basic Science Research Program (2021R1I1A2049704) of the Ministry of Education of the Republic of Korea. We thank the Korea Basic Science Institute, Ochang, Korea, for providing the NMR (700 and 800MHz), and HR-ESI-MS.

References

  1. Newman DJ, Cragg GM. 2020. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83: 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285
  2. Fenical W, Jensen PR. 2006. Developing a new resource for drug discovery: marine actinomycete bacteria. Nat. Chem. Biol. 2: 666-673. https://doi.org/10.1038/nchembio841
  3. Saito S, Kato W, Ikeda H, Katsuyama Y, Ohnishi Y, Imoto M. 2020. Discovery of "heat shock metabolites" produced by thermotolerant actinomycetes in high-temperature culture. J. Antibiot. 73: 203-210. https://doi.org/10.1038/s41429-020-0279-4
  4. Kim GS, Jang J-P, Kwon M, Oh TH, Heo KT, Lee B, et al. 2021. Jejucarbazoles A-C, carbazole glycosides with indoleamine 2,3-dioxygenase 1 inhibitory activity from Streptomyces sp. KCB15JA151. RSC. Adv. 11: 19805-19812. https://doi.org/10.1039/D1RA02895B
  5. Jang J-P, Hwang GJ, Jang M, Takahashi S, Ko SK, Osada H, et al. 2018. Aturanosides A and B, glycosylated anthraquinones with antiangiogenic activity from a soil-derived Streptomyces species. J. Nat. Prod. 81: 2004-2009. https://doi.org/10.1021/acs.jnatprod.8b00307
  6. Jang J-P, Hwang GJ, Kwon MC, Ryoo IJ, Jang M, Takahashi S, et al. 2018. Pentaminomycins A and B, hydroxyarginine-containing cyclic pentapeptides from Streptomyces sp. RK88-1441. J. Nat. Prod. 81: 806-810. https://doi.org/10.1021/acs.jnatprod.7b00882
  7. Jang J-P, Nogawa T, Futamura Y, Shimizu T, Hashizume D, Takahashi S, et al. 2017. Octaminomycins A and B, cyclic octadepsipeptides active against Plasmodium falciparum. J. Nat. Prod. 80: 134-140. https://doi.org/10.1021/acs.jnatprod.6b00758
  8. Carmeliet P. 2003. Angiogenesis in health and disease. Nat. Med. 6: 653-660. https://doi.org/10.1038/nm0603-653
  9. Lee J, Hahm E-R, Singh SV. 2010. Withaferin A inhibits activation of signal transducer and activator of transcription 3 in human breast cancer cells. Carcinogenesis 11: 1991-1998.
  10. Zhang J, Shen Y, Liu J, Wei, D. 2005. Antimetastatic effect of prodigiosin through inhibition of tumor invasion. Biochem. Pharmacol. 3: 407-414. https://doi.org/10.1016/j.bcp.2004.08.037
  11. Nakae K, Yoshimoto Y, Sawa T, Homma Y, Hamada M, Takeuchi T, et al. 2005. Migrastatin, a new inhibitor of tumor cell migration from Streptomyces sp. MK929-43F1. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 10: 1130-1136.
  12. Jang J-P, Nogawa T, Uramoto M, Okano A, Futamura Y, Shimizu T, et al. 2015. RK-270A-C, new oxindole derivatives isolated from a microbial metabolites fraction library of Streptomyces sp. RK85-270. J. Antibiot. 68: 293-295. https://doi.org/10.1038/ja.2014.141
  13. Zheng D, Han L, Jiang Y, Cao YR, Liu J, Chen X, et al. 2013. Structure elucidation of four prenylindole derivatives from Streptomyces sp. isolated from Ailuropoda melanoleuca feces. Magn. Reson. Chem. 51: 188-191. https://doi.org/10.1002/mrc.3928
  14. Bryan BA, D'Amore PA. 2007. What tangled webs they weave: Rho-GTPase control of angiogenesis. Cell. Mol. Life. Sci. 64: 2053-2065. https://doi.org/10.1007/s00018-007-7008-z
  15. Rini BI. 2007. Vascular endothelial growth factor-targeted therapy in renal cell carcinoma: current status and future directions. Clin. Cancer Res. 13: 1098-1106. https://doi.org/10.1158/1078-0432.CCR-06-1989
  16. Ng EWM, Adamis AP. 2005. Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Can. J. Ophthalmol. 40: 352-368. https://doi.org/10.1016/S0008-4182(05)80078-X
  17. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. 2006. VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell. Biol. 7: 359-371. https://doi.org/10.1038/nrm1911
  18. Lamalice L, Houle F, Jourdan G, Huot J. 2004. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 23: 434-445. https://doi.org/10.1038/sj.onc.1207034