DOI QR코드

DOI QR Code

Structure Based Protein Engineering of Aldehyde Dehydrogenase from Azospirillum brasilense to Enhance Enzyme Activity against Unnatural 3-Hydroxypropionaldehyde

  • Received : 2021.10.21
  • Accepted : 2021.12.02
  • Published : 2022.02.28

Abstract

3-Hydroxypropionic acid (3HP) is a platform chemical and can be converted into other valuable C3-based chemicals. Because a large amount of glycerol is produced as a by-product in the biodiesel industry, glycerol is an attractive carbon source in the biological production of 3HP. Although eight 3HP-producing aldehyde dehydrogenases (ALDHs) have been reported so far, the low conversion rate from 3-hydroxypropionaldehyde (3HPA) to 3HP using these enzymes is still a bottleneck for the production of 3HP. In this study, we elucidated the substrate binding modes of the eight 3HP-producing ALDHs through bioinformatic and structural analysis of these enzymes and selected protein engineering targets for developing enzymes with enhanced enzymatic activity against 3HPA. Among ten AbKGSADH variants we tested, three variants with replacement at the Arg281 site of AbKGSADH showed enhanced enzymatic activities. In particular, the AbKGSADHR281Y variant exhibited improved catalytic efficiency by 2.5-fold compared with the wild type.

Keywords

Acknowledgement

This work was supported the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2020R1A4A1018332 and 2021R1C1C2004411).

References

  1. Borodina I, Kildegaard KR, Jensen NB, Blicher TH, Maury J, Sherstyk S, et al. 2015. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine. Metab. Eng. 27: 57-64. https://doi.org/10.1016/j.ymben.2014.10.003
  2. Karp EM, Eaton TR, Nogue VSI, Vorotnikov V, Biddy MJ, Tan ECD, et al. 2017. Renewable acrylonitrile production. Science 358: 1307-1310. https://doi.org/10.1126/science.aan1059
  3. Kumar V, Ashok S, Park S. 2013. Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol. Adv. 31: 945-961. https://doi.org/10.1016/j.biotechadv.2013.02.008
  4. Valdehuesa KNG, Liu HW, Nisola GM, Chung WJ, Lee SH, Park SJ. 2013. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical. Appl. Microbiol. Biotechnol. 97: 3309-3321. https://doi.org/10.1007/s00253-013-4802-4
  5. Haas T, Brossmer C, Meier M, Arntz D, Freund A. 2000. Process for preparing 3-hydroxypropionic acid or its salt. Patent Application No. EP0819670.
  6. Behr A, Botulinski A, Carduck Fj SM. 1996. process for preparing 3-hydroxypropionic acid. Patent Application No. EP0579617.
  7. Jiang X, Meng X, Xian M. 2009. Biosynthetic pathways for 3-hydroxypropionic acid production. Appl. Microbiol. Biotechnol. 82: 995-1003. https://doi.org/10.1007/s00253-009-1898-7
  8. Rathnasingh C, Raj SM, Lee Y, Catherine C, Ashoka S, Park S. 2012. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J. Biotechnol. 157: 633-640. https://doi.org/10.1016/j.jbiotec.2011.06.008
  9. Suyama A, Higuchi Y, Urushihara M, Maeda Y, Takegawa K. 2017. Production of 3-hydroxypropionic acid via the malonyl-CoA pathway using recombinant fission yeast strains. J. Biosci. Bioeng. 124: 392-399. https://doi.org/10.1016/j.jbiosc.2017.04.015
  10. Hugler M, Huber H, Stetter KO, Fuchs G. 2003. Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol. 179: 160-173. https://doi.org/10.1007/s00203-002-0512-5
  11. Hugler M, Menendez C, Schagger H, Fuchs G. 2002. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J. Bacteriol. 184: 2404-2410. https://doi.org/10.1128/JB.184.9.2404-2410.2002
  12. Forage RG, Foster MA. 1982. Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. J. Bacteriol. 149: 413-419. https://doi.org/10.1128/jb.149.2.413-419.1982
  13. Ashok S, Raj SM, Rathnasingh C, Park S. 2011. Development of recombinant Klebsiella pneumoniae Delta dhaT strain for the coproduction of 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Appl. Microbiol. Biotechnol. 90: 1253-1265. https://doi.org/10.1007/s00253-011-3148-z
  14. Nitayavardhana S, Khanal SK. 2011. Biodiesel-derived crude glycerol bioconversion to animal feed: a sustainable option for a biodiesel refinery. Bioresour. Technol. 102: 5808-5814. https://doi.org/10.1016/j.biortech.2011.02.058
  15. da Silva GP, Mack M, Contiero J. 2009. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30-39. https://doi.org/10.1016/j.biotechadv.2008.07.006
  16. Su M, Li Y, Ge X, Tian P. 2015. 3-Hydroxypropionaldehyde-specific aldehyde dehydrogenase from Bacillus subtilis catalyzes 3-hydroxypropionic acid production in Klebsiella pneumoniae. Biotechnol. Lett. 37: 717-724. https://doi.org/10.1007/s10529-014-1730-z
  17. Chu HS, Kim YS, Lee CM, Lee JH, Jung WS, Ahn JH, et al. 2015. Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli. Biotechnol. Bioeng. 112: 356-364. https://doi.org/10.1002/bit.25444
  18. Jo JE, Raj SM, Rathnasingh C, Selvakumar E, Jung WC, Park S. 2008. Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-Hydroxypropionaldehyde as a substrate. Appl. Microbiol. Biotechnol. 81: 51-60. https://doi.org/10.1007/s00253-008-1608-x
  19. Raj SM, Rathnasingh C, Jung WC, Selvakumar E, Park S. 2010. A Novel NAD+-dependent aldehyde dehydrogenase encoded by the puuC gene of Klebsiella pneumoniae DSM 2026 that utilizes 3-hydroxypropionaldehyde as a substrate. Biotechnol. Bioproc. E. 15: 131-138. https://doi.org/10.1007/s12257-010-0030-2
  20. Luo LH, Seo JW, Heo SY, Oh BR, Kim DH, Kim CH. 2013. Identification and characterization of Klebsiella pneumoniae aldehyde dehydrogenases increasing production of 3-hydroxypropionic acid from glycerol. Bioprocess Biosyst. Eng. 36: 1319-1326. https://doi.org/10.1007/s00449-012-0880-4
  21. Li Y, Su M, Ge X, Tian P. 2013. Enhanced aldehyde dehydrogenase activity by regenerating NAD+ in Klebsiella pneumoniae and implications for the glycerol dissimilation pathways. Biotechnol. Lett. 35: 1609-1615. https://doi.org/10.1007/s10529-013-1243-1
  22. Ko Y, Ashok S, Zhou S, Kumar V, Park S. 2012. Aldehyde dehydrogenase activity is important to the production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae. Process Biochem. 47: 1135-1143. https://doi.org/10.1016/j.procbio.2012.04.007
  23. Son HF, Park S, Yoo TH, Jung GY, Kim KJ. 2017. Structural insights into the production of 3-hydroxypropionic acid by aldehyde dehydrogenase from Azospirillum brasilense. Sci. Rep. Uk 7: 46005. https://doi.org/10.1038/srep46005
  24. Park YS, Choi UJ, Nam NH, Choi SJ, Nasir A, Lee SG, et al. 2017. Engineering an aldehyde dehydrogenase toward its substrates, 3-hydroxypropanal and NAD+, for enhancing the production of 3-hydroxypropionic acid. Sci. Rep. 7: 17155. https://doi.org/10.1038/s41598-017-15400-x
  25. Kumar V, Ashok S, Park S. 2013. Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol. Adv. 31: 945-961. https://doi.org/10.1016/j.biotechadv.2013.02.008
  26. Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. 2020. QMEAND is Co-distance constraints applied on model quality estimation. Bioinformatics 36: 2647. https://doi.org/10.1093/bioinformatics/btaa058
  27. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46: W296-W303. https://doi.org/10.1093/nar/gky427
  28. Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461. https://doi.org/10.1002/jcc.21334
  29. Lebedev AA, Young P, Isupov MN, Moroz OV, Vagin AA, Murshudov GN. 2012. JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr. D, Biol. Crystallogr. 68: 431-440. https://doi.org/10.1107/S090744491200251X
  30. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. 2009. AutoDock4 and autodockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785-2791. https://doi.org/10.1002/jcc.21256
  31. Moss GP. Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB), IUBMB, Accessed 17 Aug. 2021, .