DOI QR코드

DOI QR Code

A Brucella Omp16 Conditional Deletion Strain Is Attenuated in BALB/c Mice

  • Zhi, Feijie (College of Veterinary Medicine, Northwest A&F University) ;
  • Fang, Jiaoyang (College of Veterinary Medicine, Northwest A&F University) ;
  • Zheng, Weifang (College of Veterinary Medicine, Northwest A&F University) ;
  • Li, Junmei (College of Veterinary Medicine, Northwest A&F University) ;
  • Zhang, Guangdong (College of Veterinary Medicine, Northwest A&F University) ;
  • Zhou, Dong (College of Veterinary Medicine, Northwest A&F University) ;
  • Jin, Yaping (College of Veterinary Medicine, Northwest A&F University) ;
  • Wang, Aihua (College of Veterinary Medicine, Northwest A&F University)
  • Received : 2021.07.07
  • Accepted : 2021.10.18
  • Published : 2022.01.28

Abstract

Brucella spp. are facultative intracellular pathogens that invade, survive and proliferate in numerous phagocytic and non-phagocytic cell types, thereby leading to human and animal brucellosis. Outer membrane proteins (Omps) are major immunogenic and protective antigens that are implicated in Brucella virulence. A strain deleted of the omp16 gene has not been obtained which suggests that the Omp16 protein is vital for Brucella survival. Nevertheless, we previously constructed an omp16 conditional deletion strain of Brucella, ∆Omp16. Here, the virulence and immune response elicted by this strain were assessed in a mouse model of infection. Splenomegaly was significantly reduced at two weeks post-infection in ∆Omp16-infected mice compared to infection with the parental strain. The bacterial load in the spleen also was significantly decreased at this post-infection time point in ∆Omp16-infected mice. Histopathological changes in the spleen were observed via hematoxylin-eosin staining and microscopic examination which showed that infection with the ∆Omp16 strain alleviated spleen histopathological alterations compared to mice infected with the parental strain. Moreover, the levels of humoral and cellular immunity were similar in both ∆Omp16-infected mice and parental strain-infected mice. The results overall show that the virulence of ∆Omp16 is attenuated markedly, but that the immune responses mediated by the deletion and parental strains in mice are indistinguishable. The data provide important insights that illuminate the pathogenic strategies adopted by Brucella.

Keywords

Acknowledgement

This research was funded by the National Key R&D Program of China (2018YFD0500900); the National Natural Science Foundation of China (31672584, 31702310).

References

  1. Franc KA, Krecek RC, Hasler BN, Arenas-Gamboa AM. 2018. Brucellosis remains a neglected disease in the developing world: a call for interdisciplinary action. BMC Public Health 18: 125. https://doi.org/10.1186/s12889-017-5016-y
  2. Bialer MG, Sycz G, Gonzalez FM, Ferrero MC, Baldi PC, Zorreguieta A. 2020. Adhesins of Brucella: Their roles in the interaction with the host. Pathogens 9: 942. https://doi.org/10.3390/pathogens9110942
  3. Al Dahouk S, Scholz HC, Tomaso H, Bahn P, Gollner C, Karges W, et al. 2010. Differential phenotyping of Brucella species using a newly developed semi-automated metabolic system. BMC Microbiol. 10: 269. https://doi.org/10.1186/1471-2180-10-269
  4. Foster G, Osterman BS, Godfroid J, Jacques I, Cloeckaert A. 2007. Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. Int. J. Syst. Evol. Microbiol. 57: 2688-2693. https://doi.org/10.1099/ijs.0.65269-0
  5. Scholz HC, Hubalek Z, Sedlacek I, Vergnaud G, Tomaso H, Al Dahouk S, et al. 2008. Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int. J. Syst. Evol. Microbiol. 58: 375-382. https://doi.org/10.1099/ijs.0.65356-0
  6. Lucero NE, Corazza R, Almuzara MN, Reynes E, Escobar GI, Boeri E, et al. 2010. Human Brucella canis outbreak linked to infection in dogs. Epidemiol. Infect. 138: 280-285. https://doi.org/10.1017/S0950268809990525
  7. Byndloss MX, Tsolis RM. 2016. Brucella spp. virulence factors and immunity, pp. 111-127. In Lewin HA, Roberts RM (eds.), Annual Review of Animal Biosciences, Vol 4, Ed.
  8. Elfaki MG, Alaidan AA, Al-Hokail AA. 2015. Host response to Brucella infection: review and future perspective. J. Infect. Dev. Ctries 9: 697-701. https://doi.org/10.3855/jidc.6625
  9. de Figueiredo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG. 2015. Pathogenesis and immunobiology of brucellosis review of Brucella-host interactions. Am. J. Pathol. 185: 1505-1517. https://doi.org/10.1016/j.ajpath.2015.03.003
  10. Weber MM, Faris R. 2018. Subversion of the endocytic and secretory pathways by bacterial effector proteins. Front. Cell Dev. Biol. 6: 1. https://doi.org/10.3389/fcell.2018.00001
  11. Lalsiamthara J, Lee JH. 2017. Development and trial of vaccines against Brucella. J. Vet. Sci. 18: 281-290. https://doi.org/10.4142/jvs.2017.18.S1.281
  12. Avila-Calderon ED, Lopez-Merino A, Sriranganathan N, Boyle S, Contreras-Rodriguez A. 2013. A history of the development of Brucella vaccines. Biomed Res. Int. 2013: 743509. https://doi.org/10.1155/2013/743509
  13. Dorneles EMS, Sriranganathan N, Lage AP. 2015. Recent advances in Brucella abortus vaccines. Vet. Res. 46: 76. https://doi.org/10.1186/s13567-015-0199-7
  14. Moreno E, Moriyon I. 2002. Brucella melitensis: a nasty bug with hidden credentials for virulence. Proc. Natl. Acad. Sci. USA 99: 1-3. https://doi.org/10.1073/pnas.022622699
  15. Seleem MN, Boyle SM, Sriranganathan N. 2008. Brucella: a pathogen without classic virulence genes. Vet. Microbiol. 129: 1-14. https://doi.org/10.1016/j.vetmic.2007.11.023
  16. Glowacka P, Zakowska D, Naylor K, Niemcewicz M, Bielawska-Drozd A. 2018. Brucella - virulence factors, pathogenesis and treatment. Pol. J. Microbiol. 67: 151-161. https://doi.org/10.21307/pjm-2018-029
  17. de Jong MF, Starr T, Winter MG, den Hartigh AB, Child R, Knodler LA, et al. 2013. Sensing of bacterial type IV secretion via the unfolded protein response. mBio 4: e00418-12.
  18. Miller CN, Smith EP, Cundiff JA, Knodler LA, Blackburn JB, Lupashin V, et al. 2017. A brucella type IV effector targets the COG tethering complex to remodel host secretory traffic and promote intracellular replication. Cell Host Microbe 22: 317-329. https://doi.org/10.1016/j.chom.2017.07.017
  19. Bohin JP. 2000. Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol. Lett. 186: 11-19. https://doi.org/10.1016/S0378-1097(00)00110-5
  20. Caro-Hernandez P, Fernandez-Lago L, de Miguel M-J, Martin-Martin AI, Cloeckaert A, Grillo M-J, et al. 2007. Role of the Omp25/Omp31 family in outer membrane properties and virulence of Brucella ovis. Infect. Immun. 75: 4050-4061. https://doi.org/10.1128/IAI.00486-07
  21. Ibanez AE, Smaldini P, Coria LM, Delpino MV, Pacifico LG, Oliveira SC, et al. 2013. Unlipidated outer membrane protein Omp16 (U-Omp16) from Brucella spp. as nasal adjuvant induces a Th1 immune response and modulates the Th2 allergic response to cow's milk proteins. PLoS One 8: e69438. https://doi.org/10.1371/journal.pone.0069438
  22. Letesson JJ, Lestrate P, Delrue RM, Danese I, Bellefontaine F, Fretin D, et al. 2002. Fun stories about Brucella: the "furtive nasty bug". Vet. Microbiol. 90: 317-328. https://doi.org/10.1016/S0378-1135(02)00208-0
  23. Li TS, Huang ML, Wang Z, Guo F, Zhang H, Chen CF. 2017. Construction and characteristic analysis of Omp10 deletion mutant of Brucella abortus. Pak J. Zool. 49: 1809-1816.
  24. Tibor A, Wansard V, Bielartz V, Delrue RM, Danese I, Michel P, et al. 2002. Effect of omp10 or omp19 deletion on Brucella abortus outer membrane properties and virulence in mice. Infect. Immun. 70: 5540-5546. https://doi.org/10.1128/IAI.70.10.5540-5546.2002
  25. Pasquevich KA, Carabajal MV, Guaimas FF, Bruno L, Roset MS, Coria LM, et al. 2019. Omp19 enables Brucella abortus to evade the antimicrobial activity from host's proteolytic defense system. Front. Immunol. 10: 1436. https://doi.org/10.3389/fimmu.2019.01436
  26. Wang YF, Chen ZL, Qiao F, Zhong ZJ, Xu J, Wang ZJ, et al. 2010. The type IV secretion system affects the expression of Omp25/Omp31 and the outer membrane properties of Brucella melitensis. FEMS Microbiol. Lett. 303: 92-100. https://doi.org/10.1111/j.1574-6968.2009.01866.x
  27. Pasquevich KA, Garcia Samartino C, Coria LM, Estein SM, Zwerdling A, Ibanez AE, et al. 2010. The protein moiety of Brucella abortus outer membrane protein 16 is a new bacterial pathogen-associated molecular pattern that activates dendritic cells in vivo, induces a Th1 immune response, and is a promising self-adjuvanting vaccine against systemic and oral acquired brucellosis. J. Immunol. 184: 5200-5212. https://doi.org/10.4049/jimmunol.0902209
  28. Sidhu-Munoz RS, Sancho P, Vizcaino N. 2016. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties. Vet. Microbiol. 186: 59-66. https://doi.org/10.1016/j.vetmic.2016.02.010
  29. Zhi FJ, Zhou D, Li JM, Tian LL, Zhang GD, Jin YP, et al. 2020. Omp16, a conserved peptidoglycan-associated lipoprotein, is involved in Brucella virulence in vitro. J. Microbiol. 58: 793-804. https://doi.org/10.1007/s12275-020-0144-y
  30. Yang L, Ma T, Zhao L, Jiang H, Zhang J, Liu D, et al. 2021. Circadian regulation of apolipoprotein gene expression affects testosterone production in mouse testis. Theriogenology 174: 9-19. https://doi.org/10.1016/j.theriogenology.2021.06.023
  31. Smither SJ, Perkins SD, Davies C, Stagg AJ, Nelson M, Atkins HS. 2009. Development and characterization of mouse models of infection with aerosolized Brucella melitensis and Brucella suis. Clin. Vaccine Immunol. 16: 779-783. https://doi.org/10.1128/CVI.00029-09
  32. Zhu LQ, Feng Y, Zhang G, Jiang H, Zhang Z, Wang N, et al. 2016. Brucella suis strain 2 vaccine is safe and protective against heterologous Brucella spp. infections. Vaccine 34: 395-400. https://doi.org/10.1016/j.vaccine.2015.09.116
  33. Luo X, Zhang X, Wu X, Yang X, Han C, Wang Z, et al. 2017. Brucella downregulates tumor necrosis factor-alpha to promote intracellular survival via Omp25 regulation of different microRNAs in porcine and murine macrophages. Front. Immunol. 8: 2013. https://doi.org/10.3389/fimmu.2017.02013
  34. Tabynov K, Sansyzbay A, Kydyrbayev Z, Yespembetov B, Ryskeldinova S, Zinina N, et al. 2014. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B. abortus infection. Virol. J. 11: 69. https://doi.org/10.1186/1743-422X-11-69
  35. Wang YL, Ma ZC, Zhang H, Yi JH, Wang Y, Li TS, et al. 2020. The Deletion of Omp19 gene of Brucella abortus 2308 reduces its survival in mouse macrophage and in mice. Kafkas Univ. Vet. Fak. 26: 749-755.
  36. Edmonds MD, Cloeckaert A, Elzer PH. 2002. Brucella species lacking the major outer membrane protein Omp25 are attenuated in mice and protect against Brucella melitensis and Brucella ovis. Vet. Microbiol. 88: 205-221. https://doi.org/10.1016/S0378-1135(02)00110-4
  37. Verdiguel-Fernandez L, Oropeza-Navarro R, Basurto-Alcantara F, Castaneda-Ramirez A, Verdugo-Rodriguez A. 2017. Omp31 plays an important role on outer membrane properties and intracellular survival of Brucella melitensis in murine macrophages and HeLa cells. Arch. Microbiol. 199: 971-978. https://doi.org/10.1007/s00203-017-1360-7
  38. Verdiguel-Fernandez L, Oropeza-Navarro R, Ortiz A, Robles-Pesina MG, Ramirez-Lezama J, Castaneda-Ramirez A, et al. 2020. Brucella melitensis omp31 mutant is attenuated and confers protection against virulent Brucella melitensis challenge in BALB/c mice. J. Microbiol. Biotechnol. 30: 497-504. https://doi.org/10.4014/jmb.1908.08056
  39. Sola-Landa A, Pizarro-Cerda J, Grillo MJ, Moreno E, Moriyon I, Blasco JM, et al. 1998. A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol. Microbiol. 29: 125-138. https://doi.org/10.1046/j.1365-2958.1998.00913.x
  40. Feng Y, Peng XW, Jiang H, Peng Y, Zhu LQ, Ding JB. 2017. Rough Brucella strain RM57 is attenuated and confers protection against Brucella melitensis. Microb. Pathog. 107: 270-275. https://doi.org/10.1016/j.micpath.2017.03.045
  41. Vitry MA, Mambres DH, De Trez C, Akira S, Ryffel B, Letesson JJ, et al. 2014. Humoral immunity and CD4(+) Th1 cells are both necessary for a fully protective immune response upon secondary infection with Brucella melitensis. J. Immunol. 192: 3740-3752. https://doi.org/10.4049/jimmunol.1302561
  42. Casadevall A, Pirofski LA. 2006. A reappraisal of humoral immunity based on mechanisms of antibody-mediated protection against intracellular pathogens. Adv. Immunol. 91: 1-44. https://doi.org/10.1016/s0065-2776(06)91001-3
  43. Vidarsson G, Dekkers G, Rispens T. 2014. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5: 520. https://doi.org/10.3389/fimmu.2014.00520
  44. Rolan HG, Tsolis RA. 2008. Inactivation of the type IV secretion system reduces the Th1 polarization of the immune response to Brucella abortus infection. Infect. Immun. 76: 3207-3213. https://doi.org/10.1128/IAI.00203-08
  45. Zhan YF, Liu ZQ, Cheers C. 1996. Tumor necrosis factor alpha and interleukin-12 contribute to resistance to the intracellular bacterium Brucella abortus by different mechanisms. Infect. Immun. 64: 2782-2786. https://doi.org/10.1128/iai.64.7.2782-2786.1996
  46. Rubach MP, Halliday JEB, Cleaveland S, Crump JA. 2013. Brucellosis in low-income and middle-income countries. Curr. Opin. Infect. Dis. 26: 404-412. https://doi.org/10.1097/QCO.0b013e3283638104
  47. Murphy EA, Sathiyaseelan J, Parent MA, Zou BX, Baldwin CL. 2001. Interferon-gamma is crucial for surviving a Brucella abortus infection in both resistant C57BL/6 and susceptible BALB/c mice. Immunology 103: 511-518. https://doi.org/10.1046/j.1365-2567.2001.01258.x