Acknowledgement
This study was supported by the research grant of the KODISA Scholarship Foundation in 2021.
References
- Adhikari, S. (2020). Research Ethics: Definition, Principles and Advantages. In AI ROI: Computer Vision whitepaper 2021. (https://www.publichealthnotes.com/research-ethicsdefinition-principles-and-advantages/)
- Arun, R., Suresh, V., Veni Madhavan. C. E., & Narasimha Myrthy, M. N. (2010). On finding the natural number of topics with latent dirichlet allocation: Some observations. In: Zaki M.J., Yu J.X., Ravindran B., Pudi V. (eds) Advances in knowledge discovery and data mining. PAKDD 2010. Lecture notes in computer science, vol 6118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13657-3_43
- Blei, D. M., Ng, A. Y., Jordam, M. I (2003). Latent dirichlet allocation. Journal of MachineLearning Research, 3, 993-1022.
- Cao, J., Xia, T., Li, J., Zhang, Y., & Tang, S. (2009). A density-based method for adaptive LDA model selection. Neurocomputing, 72(7-9), 1775-1781. https://doi.org/10.1016/j.neucom.2008.06.011
- Deveaud, R., SanJuan, E., & Bellot, P. (2014). Accurate and effective latent concept modeling for ad hoc information retrieval. Document numerique, 17, 61-84. https://doi.org/10.3166/dn.17.1.61-84
- Griffiths, T., & Steyvers, M. (2004). Finding scientific topics. PNAS, 1(101), 5228-5235. https://doi.org/10.1073/pnas.0307752101
- Kim, N. G., Lee, D. H. Choi, H. C., & Wong, W. X. S. (2017). Investigations on techniques and applications of text analytics. The Journal of Korean Institute of Communications and Information Sciences(JKICS), 42(2), 471-492. https://doi.org/10.7840/kics.2017.42.2.471
- Mackinnon, B. (2009). ETHICS: Theory and contemporary issues(6th Ed.). CA: Wardworth
- Yang, H. C. (in press). Topic Modeling Analysis of Franchise Research Trends Using LDA Algorithm. The Korean Journal of Franchise Management., 12(4).