Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT: Ministry of Science and ICT) (No. NRF-2019R1F1A1059036).
References
- R. Shafin et al. (2020). Artificial intelligence-enabled cellular networks: A critical path to beyond-5g and 6g, IEEE Wireless Communications, 27(2), 212-217. https://doi.org/10.1109/mwc.001.1900323
- McAfee. (2021). McAfee Mobile Threat Report 2021.
- Statcounter Global Stats. (2021. Dec.). Mobile Operating System Market Share Worldwide, (Online). https://gs.statcounter.com/os-market-share/mobile/worldwide
- F. A. Narudin, A. Feizollah, N. B. Anuar & A. Gani. (2016. Jan.). Evaluation of machine learning classifiers for mobile malware detection, Soft Computing, 20. 343-357. DOI : 10.1007/s00500-014-1511-6
- S. E. Kang, N. V. Long & S. H. Jung. (2018. June). Android malware detection using permission-based machine learning approach, Journal of The Korea Institute of Information Security & Cryptology, 28(3). 617-623. DOI : 10.13089/JKIISC.2018.28.3.617
- H. Cho. (2019). A study on Android malware event trigger based on reinforcement learning, Master Thesis, Graduate School of Soongsil University, Seoul.
- J. G. Joo, I. S. Jeong & S. H. Kang. (2019). An optimal feature selection method to detect malwares in real time using machine learning, Journal of Korea Multimedia Society, 22(2), 203-209. DOI : 10.9717/kmms.2019.22.2.203
- J. H. Bo & K. H. Lee. (2020. June). Advanced feature selection method on Android malware detection by machine learning, Journal of the Korea Institute of Information Security & Cryptology, 30(3), 357-367. DOI : 10.13089/JKIISC.2020.30.3.357
- Android Developer. (n. d.). Android App Bundle Information (Online). https://developer.android.com/guide/app-bundle
- Android Developer. (n. d.). Authority on Android. (Online). https://developer.android.com/guide/topics/permissions/overview
- Android Developer. (n. d.). Android developer > Document > Guide (Online). https://developer.android.com/guide/topics/manifest/permission-element
- J. H. Yu, I. H. Seo & S. J. Kim. (2017). Study on DNN based Android malware detection method for mobile environment, KIPS Transactions on Computer and Communication Systems, 6(3), 159-168. DOI : 10.3745/KTCCS.2017.6.3.159
- L. Li et al. (2017. Aug.). Static analysis of android apps: A systematic literature review, Information and Software Technology, 88, 67-95. DOI : 10.1016/j.infsof.2017.04.001
- S. Sarangi, M. Sahidullah & G. Saha. (2020. Sept.). Optimization of data-driven filterbank for automatic speaker verification. Digital Signal Processing, 104. DOI : 10.1016/j.dsp.2020.102795
- S. Y. Yerima & S. Sezer. (2019. Feb.). DroidFusion: A novel multilevel classifier fusion approach for android malware detection, IEEE Transactions on Cybernetics, 49(2), 453-466. DOI : 10.1109/TCYB.2017.2777960
- D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon & K. Rieck. (2014. Feb.). Drebin: efficient and explainable detection of android malware in your pocket, Network and Distributed System Security (NDSS) Symposium, San Diego, CA, USA. DOI : 10.14722/ndss.2014.23247
- Y. Zhou & X. Jiang. (2012. May). Dissecting android malware: characterization and evolution, IEEE Symposium on Security and Privacy, San Fransisco, CA, USA. DOI : 10.1109/SP.2012.16