Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1G1A1011136) and Incheon National University Research Grant in 2020.
References
- G. A. Jones. (2005). Exploring probability in school: Challenges for teaching and learning. Springer Science & Business Media.
- Ministry of Education. (1997). The 7th national mathematics curriculum.
- D. H. Jang & H. J. Lee. (2004). A Study on Probability and Statistics Education in 1-10 Grade Mathematics Textbooks in Korea. The Korean Journal of applied Statistics, 18(1), 229-249. DOI : 10.5351/KJAS.2005.18.1.229
- M. S. Park & E. J. Lee. (2021). An Analysis of Domestic Research Trends of Probability Education. Journal of the Korean School Mathematics, 24(4), 349-367. DOI : 10.30807/ksms.2021.24.4.002
- K. S. Oh. (2011). Probability and statistics curriculum in school. Journal of the Korean Data And Information Science Society, 22(6), 1097-1103.
- C. I. Kim & Y. J. Jeon. (2018). A Study on Pre-service Mathematics Teachers' some Misconceptions in the Statistics and Probability. ournal of the Korean School Mathematics, 21(4), 469-483. DOI : 10.30807/ksms.2018.21.4.008
- F. B. Baker & S-H. Kim. (2004). Item response theory: Parameter estimation techniques. CRC Press.
- S. E. Embretson & S. P. Reise. (2013). Item response theory. Psychology Press.
- C. D. Desjardins & O. Bulut. (2018). Handbook of Educational Measurement and Psychometrics using R. CRC Press,
- M. von Davier & Y. S. Lee. (2019). Handbook of diagnostic classification models. Springer International Publishing.
- A. A. Rupp & J. L. Templin. (2008). Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art. Measurement, 6(4), 219-262. DOI : 10.1080/15366360802490866
- M. Birenbaum, A. E. Kelly & K. K. Tatsuoka. (1993). Diagnosing knowledge states in algebra using the rule-space model. Journalfor Research in Mathematics Education, 24(5), 442-459. DOI: 10.5951/jresematheduc.24.5.0442
- K. K. Tatsuoka. (1983). Rule space: An approach for dealing with misconceptions based on item response theory. Journal ofeducational measurement, 345-354.
- J. P. Leighton, M. J. Gierl & S. M. Hunka. (2004). The attribute hierarchy method for cognitive assessment: A variation on Tatsuoka's rule-space approach. Journal of educational measurement, 41(3), 205-237. DOI : 10.1111/j.1745-3984.2004.tb01163.x
- M. J. Gierl, C. Alves & R. T. Majeau. (2010). Using the attribute hierarchy method to make diagnostic inferences about examinees' knowledge and skills in mathematics: An operational implementation of cognitive diagnostic assessment. International Journal of Testing, 10(4), 318-341. DOI : 10.1080/15305058.2010.509554
- J. de la Torre. (2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45, 343-362. DOI : 10.1111/j.1745-3984.2008.00069.x
- L. T. DeCarlo, (2012). Recognizing uncertainty in the Q-matrix via a Bayesian extension of the DINA model. Applied Psychological Measurement, 36, 447-468. DOI : 10.1177/0146621612449069
- C. Y. Chiu. (2013) Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37, 598-618. DOI : 10.1177/0146621613488436
- H. Koh, W. Jang & Y. Yoo. (2021). On Validating Cognitive Diagnosis Models for the Arithmetic Skills of Elementary School Students. International Journal of Advanced Computer Science and Applications, 12(12), 51-55. DOI : 10.14569/IJACSA.2021.0121207
- W. Jang & Y. Yoo. (2020). Analysis of the Status of Students' Knowledge Using Unsupervised Learning. Journal of The Korean Institute of Intelligent Systems. 30(4), 314-324. DOI : 10.5391/JKIIS.2020.30.4.315
- T. Hastie, R. Tibshirani, & J. Friedman. (2009). The elements of statistical learning. New York: springer.
- I. T. Jolliffe. (1986). Principal component analysis. Springer.
- J. A. Hartigan & M. A. Wong. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the royal statistical society. series C, 28(1), 100-108. DOI: 10.2307/2346830
- L. Xu & M. I. Jordan. (1996). On convergence properties of the EM algorithm for Gaussian mixtures. Neural computation, 8(1), 129-151. DOI: 10.1162/neco.1996.8.1.129
- P. J. Rousseeuw & K. V. Driessen. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41(3), 212-223. https://doi.org/10.1080/00401706.1999.10485670
- K. P. Burnham & D. R. Anderson. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological methods & research, 33(2), 261-304. DOI : 10.1177/0049124104268644
- J. Y. Lee & K. H. Lee. (2017). Study on the Levels of Informal Statistical Inference of the Middle and High School Students. School Mathematics 19(3), 533-551.
- M. S. Park, M. Park, K. H. Lee & E. S. Ko. (2011). Middle School Students' Statistical Inference Engaged in Comparing Data Sets. School Mathematics 13(4), 599-614.
- Y. M. Jee & Y. Yoo. (2019). Undergraduates' Understanding of Sampling Distribution and Confidence Interval in Statistical Inference. School Mathematics, 21(1). 125-153. DOI : 10.29275/sm.2019.03.21.1.125
- E. S. Ko & K. H. Lee. (2011). Pre-service Teachers' Understanding of Statistical Sampling. Journal of Educational Research in Mathematics 21(1), 17-32.
- L. Saldanha & P. Thompson. (2002). Conceptions of sample and their relationship to statistical inference. Educational studies in mathematics, 51(3), 257-270. DOI : 10.1023/A:1023692604014
- D. Ben-Zvi & J. B. Garfield. (2004). The challenge of developing statistical literacy, reasoning and thinking. Kluwer academic publishers.