과제정보
This paper was supported by the research fund of Changwon National University in 2021-2022.
참고문헌
- J. C. Maxwell. (1873). A treatise on electricity and magnetism (Vol. 1). Clarendon press.
- S. U. Choi, D. A. Singer & H. P. Wang. (1995). Developments and applications of non-Newtonian flows. ASME Fed, 66, 99-105.
- S. Lee, S. U. S. Choi, S. Li & J. A. Eastman. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280-289. DOI : 10.1115/1.2825978
- H. Masuda, A. Ebata & K. Teramae. (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. (Dispersion of Al2O3, SiO2. and TiO2 ultra-fin particles) Netsu Bussei (Japan), 4(4), 227-233.
- O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, & S. Wongwises, (2013). A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer, 57(2), 585-594. DOI : 10.1016/j.ijheatmasstransfer.2012.10.037
- S. Mirmasoumi & A. Behzadmehr. (2008). Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizonatl tube. International journal of heat and fluid flow, 29(2), 557-566. DOI : 10.1016/j.ijheatfluidflow.2007.11.007
- S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy, & N. Galanis, (2005). Heat transfer enhancement by using nanofluids in forced convection flow. International journal of heat and fluid flow, 26(4), 530-546. DOI : 10.1016/j.ijheatfluidflow.2005.02.004
- H. K. Choi & G. J. Yoo. (2014). Numerical study of nanofluids forced convection in circular tubes. Journal of computational fluids engineering, 19(3), 37-43. DOI : 10.6112/kscfe.2014.19.3.037
- H. K. Choi & Y. S. Lim. (2019). Numerical study of mixed convection nanofluid in horizontal tube. Journal of Convergence for Information Technology, 9(8), 155-163. DOI : 10.22156./CS4SMB.2019.9.8.155
- B. Farajollahi, S. G. Etemad & M. Hojjat. (2010). Heat transfer of nanofluids in a shell and tube heat exchanger. International Journal of Heat and Mass Transfer, 53(1-3), 12-17. DOI : 10.1016/j.ijheatmasstransfer.2009.10.019
- B. C. Pak & Y. I. Cho. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151-170. DOI : 10.1080/08916159808946559
- J. A. Fairbank & R. M. So. (1987). Upstream and downstream influence of pipe curvature on the flow through a bend. International journal of heat and fluid flow, 8(3), 211-217. DOI : 10.1016/0142-727X(87)90030-0
- C. E. Kalb & J. D. Seader. (1972). Heat and mass transfer phenomena for viscous flow in curved circular tubes. International Journal of Heat and Mass Transfer, 15(4), 801-817. DOI : 10.1016/0017-9310(72)90122-6
- M. Kahani, S. Z. Heris & S. M. Mousavi. (2014). Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube. Heat and Mass Transfer, 50(11), 1563-1573. DOI : 10.1007/s00231-014-1367-4
- S. M. Hashemi & M. A. Akhavan-Behabadi. (2012). An empirical study on heat transfer and pressure drop characteristics of CuO-base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux. International Communications in Heat and Mass Transfer, 39(1), 144-151. DOI : 10.1016/j.icheatmasstransfer.2011.09.002
- P. C. Mukesh Kumar, J. Kumar & S. Suresh. (2012). Heat transfer and friction factor studies in helically coiled tube using Al2O3/water Nanofluid. European Journal of Scientific Research, 82, 161-172.
- ANSYS. (2019). ANSYS Fluent V.19 User Guide, USA.
- S. A. Zonouzi, H. Aminfar & M. Mohammadpourfadr. (2014). 3D numerical investigation of thermal characteristics of nanofluidd flow throught helical tubes using two-phase mixture model. International Journal Computational Methods in Engineering Science and Mechanics, 15(6), 512-521. DOI : 10.1080/15502287.2014.952847
- J. Koo & C. Kleinstreuer. (2004). A new thermal conductivity model for nanofluids. Journal of Nanoparticle research, 6(6), 577-588. DOI : 10.1007/s11051-004-3170-5
- R. S. Vajjha & D. K. Das. (2009). Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer, 52(21-22), 4675-4682. DOI : 10.1016/j.ijheatmasstransfer.2009.06.027
- B. E. EBRAHIMNIA & H. Niazmand. (2011). Convective heat transfer of nanofluids flows through an isothermally heated curved pipe. Iran. J. Chem. Eng, 8(2), 81-97.
- F. N. Van de Vosse, A. A. Van Steenhoven, A. Segal & J. D. Janssen. (1989). A finite element analysis of the steady laminar entrance flow in a 90 curved tube. International journal for numerical methods in fluids, 9(3), 275-287. DOI : 10.1002/fld.1650090304
- H. Mahdizadeh & N. M. Adam. (2021). Numerical study of heat transfer in 90° bend tube by Al2O3 nanofluids using fluid injection. Journal of Engineering, Design and Technology, 19(1), 127-148. DOI : 10.1108/JEDT-02-2020-0061