DOI QR코드

DOI QR Code

Analytical strategies for floating solar PV policy development in South Korea

  • Received : 2021.05.29
  • Accepted : 2021.09.13
  • Published : 2022.01.25

Abstract

Using the SWOT-AHP method, this study identifies the priorities in the development of floating solar photovoltaics (PV) and suggests possible strategies. Our study analyzed the priorities in planning future solar PV strategies based on the opinions of 27 experts. Our results indicate that the government should expand support while emphasizing the benefit of floating solar PV in that it causes less environmental damage compared to onshore solar PV. In addition, the government should properly deal with the public-private conflict regarding the installation of floating solar PV. Floating solar PV itself has not reached a mature technological and institutional stage, but could be an option or alternative for saturated onshore solar PV facilities in Korea.

Keywords

References

  1. Ananda, J. and Herath, G. (2003), "The use of analytic hierarchy process to incorporate stakeholder preferences into regional forest planning", Forest Policy Econ., 5(1), 13-26. https://doi.org/10.1016/S1389-9341(02)00043-6.
  2. Arslan, O. and Turan, O. (2009), "Analytical investigation of marine casualties at the Strait of Istanbul with SWOT-AHP method", Maritime Policy Manage., 36(2), 131-145. https://doi.org/10.1080/03088830902868081.
  3. Cazzaniga, R. and Rosa-Clot, M. (2021), "The booming of floating PV", Solar Energy, 219, 3-1. https://doi.org/10.1016/j.solener.2020.09.057.
  4. Cho, S. and Kim, J. (2015), "Feasibility and impact analysis of a renewable energy source (RES)-based energy system in Korea", Energy, 85, 317-328. https://doi.org/10.1016/j.energy.2015.03.081.
  5. Clemons, S.K.C., Salloum, C.R., Herdegen, K.G., Kamens, R.M. and Gheewala, S.H. (2021), "Life cycle assessment of a floating photovoltaic system and feasibility for application in Thailand", Renew. Energ., 168, 448-462. https://doi.org/10.1016/j.renene.2020.12.082.
  6. Committee of Government Planning (2017), "Five-year plan of Moon Jae-in government", Government Report No. 0; Committee of Government Planning, Republic of Korea.
  7. Etongo, D., Kanninen, M., Epule, T. E. and Fobissie, K. (2018), "Assessing the effectiveness of joint forest management in Southern Burkina Faso: A SWOT-AHP analysis", Forest Policy Econ., 90, 31-38. https://doi.org/10.1016/j.forpol.2018.01.008.
  8. Exley, G., Armstrong, A., Page, T. and Jones, I.D. (2021), "Floating photovoltaics could mitigate climate change impacts on water body temperature and stratification", Solar Energy, 219, 24-33. https://doi.org/10.1016/j.solener.2021.01.076.
  9. Fereshtehpour, M., Sabbaghian, R.J., Farrokhi, A., Jovein, E.B. and Sarindizaj, E.E. (2021), "Evaluation of factors governing the use of floating solar system: A study on Iran's important water infrastructures", Renew. Energ., 171, 1171-1187. https://doi.org/10.1016/j.renene.2020.12.005.
  10. Gadzanku, S., Mirletz, H., Lee, N., Daw, J. and Warren, A. (2021), "Benefits and critical knowledge gaps in determining the role of floating photovoltaics in the energy-water-food nexus", Sustainability, 13(8), 4317. https://doi.org/10.3390/su13084317.
  11. Goswami, A., Sadhu, P., Goswami, U. and Sadhu, P.K. (2019), "Floating solar power plant for sustainable development: A techno-economic analysis", Environ. Prog. Sust. Energ., 38(6), 13268. https://doi.org/10.1002/ep.13268.
  12. Goswami, A. and Sadhu, P.K. (2021), "Adoption of floating solar photovoltaics on waste water management system: A unique nexus of water-energy utilization, low-cost clean energy generation and water conservation", Clean Technol. Environ. Policy, 1-26. https://doi.org/10.1007/s10098-021-02077-0.
  13. Gurel, E. and Tat. M. (2017), "Swot analysis: A theoretical review", J. Int. Social Res., 10, 51. http://doi.org/10.17719/jisr.2017.1832.
  14. Hooper, T., Armstrong, A. and Vlaswinkel, B. (2021), "Environmental impacts and benefits of marine floating solar", Solar Energy, 219, 11-14. https://doi.org/10.1016/j.solener.2020.10.010.
  15. Hosseini, S.E. (2020), "An outlook on the global development of renewable and sustainable energy at the time of COVID-19", Energ. Res. Social Sci., 68, 101633. https://doi.org/10.1016/j.erss.2020.101633.
  16. Huang, P. (2021), "When government-led experimentation meets social resistance? A case study of solar policy retreat in Shenzhen, China", Energ. Res. Social Sci., 75, 102031. https://doi.org/10.1016/j.erss.2021.102031.
  17. Kim, J. and Heo, E. (2016), "Sources of structural change in energy use: A decomposition analysis for Korea", Energ. Source Part B, 11(4), 309-313. https://doi.org/10.1080/15567249.2011.626014.
  18. Kim, J., Park, J., Kim, J. and Heo, E. (2013), "Renewable electricity as a differentiated good? The case of the Republic of Korea", Energ. Policy, 54, 327-334. https://doi.org/10.1016/j.enpol.2012.11.042.
  19. Kim, K. (2018), "Environmental issues and tasks of floating solar power pv installed in dam for supply of tap water", Research Report No. 37; National Assembly Research Service, Republic of Korea.
  20. Korea Energy Agency (2019), "Statistics of renewable energy generation 2018", Research report No. 0; Korea energy agency, Republic of Korea.
  21. Kurttila, M., Pesonen, M., Kangas, J. and Kajanus, M. (2000), "Utilizing the analytic hierarchy process (AHP) in SWOT analysis-a hybrid method and its application to a forest-certification case", Forest Policy Econ., 1(1), 41-52. https://doi.org/10.1016/S1389-9341(99)00004-0.
  22. Kuzemko, C., Bradshaw, M., Bridge, G., Goldthau, A., Jewell, J., Overland, I., Scholten, D., Graaf. T.V. and Westphal, K. (2020), "Covid-19 and the politics of sustainable energy transitions", Energ. Res. Social Sci., 68, 101685. https://doi.org/10.1016/j.erss.2020.101685.
  23. Lee, S.H., Lee, N.H., Choi, H.C. and Kim, J.O. (2012), "Study on analysis of suitable site for development of floating photovoltaic system", J. Korean Inst. Illuminat. Electr. Install. Eng., 26(7), 30-38. https://doi.org/10.5207/JIEIE.2012.26.7.030.
  24. Lee, Y., Kim, B. and Hwang, H. (2020), "Which institutional conditions lead to a successful local energy transition? Applying fuzzy-set qualitative comparative analysis to solar PV cases in South Korea", Energies, 13(14), 3696. https://doi.org/10.3390/en13143696.
  25. Moore, S. and Hackett, E.J. (2016), "The construction of technology and place: Concentrating solar power conflicts in the United States", Energ. Res. Social Sci., 11, 67-78. https://doi.org/10.1016/j.erss.2015.08.003.
  26. Ministry of Trade, Industry and Energy (2018), "Press Letter", Government report, No. 0; MOTIE., Republic of Korea
  27. Ministry of Trade, Industry and Energy (2017), "Renewable energy 3020 plan", Government report, No. 0; MOTIE., Republic of Korea.
  28. Nam, K., Hwangbo, S. and Yoo, C. (2020), "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea", Renew. Sust. Energ. Rev., 122, 109725. https://doi.org/10.1016/j.rser.2020.109725.
  29. Oliveira-Pinto, S. and Stokkermans, J. (2020), "Assessment of the potential of different floating solar technologies-Overview and analysis of different case studies", Energ. Convers. Manage., 211, 112747. https://doi.org/10.1016/j.enconman.2020.112747.
  30. Pimentel Da Silva, G.D. and Branco, D.A.C. (2018), "Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts", Impact Assess. Project Apprais., 36(5), 390-400. https://doi.org/10.1080/14615517.2018.1477498.
  31. Saaty, R.W. (1987), "The analytic hierarchy process-what it is and how it is used", Math. Modell., 9(3-5), 161-176. https://doi.org/10.1016/0270-0255(87)90473-8.
  32. Saaty, T.L. and Vargas, L.G. (2012), The Seven Pillars of the Analytic Hierarchy Process in Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, Springer, Boston, U.S.A. https://doi.org/10.1007/978-1-4614-3597-6_2.
  33. SERIS. (2019), Where Sun meets Water; SERIS, Washington, U.S.A. https://openknowledge.worldbank.org/handle10986/31880.
  34. Solangi, Y.A., Tan, Q., Mirjat, N.H. and Ali, S. (2019), "Evaluating the strategies for sustainable energy planning in Pakistan: An integrated SWOT-AHP and Fuzzy-TOPSIS approach", J. Clean. Prod., 236, 117655. https://doi.org/10.1016/j.jclepro.2019.117655.
  35. Sulaeman, S., Brown, E., Quispe-Abad, R. and Muller, N. (2021), "Floating PV system as an alternative pathway to the amazon dam underproduction", Renew. Sust. Energ. Rev., 135, 110082. https://doi.org/10.1016/j.rser.2020.110082.
  36. Suman, M.N.H., Chyon, F.A. and Ahmmed, M.S. (2020), "Business strategy in Bangladesh-Electric vehicle SWOT-AHP analysis: Case study", Int. J. Eng. Bus. Manage., 12, 1847979020941487. https://doi.org/10.1177/1847979020941487.
  37. Sukarso, A.P. and Kim, K.N. (2020), "Cooling effect on the floating solar PV: Performance and economic analysis on the case of west Java province in Indonesia", Energies, 13(9), 2126. https://doi.org/10.3390/en13092126.
  38. Vaka, M., Walvekar, R., Rasheed, A.K. and Khalid, M. (2020), "A review on Malaysia's solar energy pathway towards carbon-neutral Malaysia beyond Covid'19 pandemic", J. Clean. Prod., 122834. https://doi.org/10.1016/j.jclepro.2020.122834.
  39. Woo, J., Chung, S., Lee, C.Y. and Huh, S.Y. (2019), "Willingness to participate in community-based renewable energy projects: A contingent valuation study in South Korea", Renew. Sust. Energ. Rev., 112, 643-652. https://doi.org/10.1016/j.rser.2019.06.010.
  40. Yoshino, N., Taghizadeh-Hesary, F. and Otsuka, M. (2020), "Covid-19 and optimal portfolio selection for investment in sustainable development goals", Finance Res. Lett., 101695. https://doi.org/10.1016/j.frl.2020.101695.