참고문헌
- Allen, S.J., Mckay, G. and Khader, K.Y.H. (1989), "Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat", Environ. Pollut., 56(1), 39-50. https://doi.org/10.1016/0269-7491(89)90120-6.
- Alnajrani, M.N. and Alsager, O.A. (2020), "Removal of antibiotics from water by polymer of intrinsic microporosity: Isotherms, kinetics, thermodynamics, and adsorption mechanism", Sci. Rep., 10(1), 794. https://doi.org/10.1038/s41598-020-57616-4.
- Alshameri, A., Yan, C. and Lei, X. (2014), "Enhancement of phosphate removal from water by TiO2/Yemeni natural zeolite: Preparation, characterization and thermodynamic", Micropor. Mesopor. Mater. J., 196, 145-157. https://doi.org/10.1016/j.micromeso.2014.05.008.
- Amarasinghe, B.M.W.P.K. and Williams, R.A. (2007), "Tea waste as a low-cost adsorbent for the removal of Cu and Pb from wastewater", Chem, Eng. J., 132(1-3), 299-309. https://doi.org/10.1016/j.cej.2007.01.016.
- Ayyappan, R., Carmalin Sophia, A., Swaminathan, K. and Sandhya, S. (2005), "Removal of Pb (II) from aqueous solution using carbon derived from agricultural wastes", Proc. Biochem., 40(3-4), 1293-1299. https://doi.org/10.1016/j.procbio.2004.05.007.
- Axtell, N.R., Sternberg, S.P. and Claussen, K. (2003), "Lead and nickel removal using microspora and lemna minor", Bioresour. Technol., 89(1), 41-48. https://doi.org/10.1016/S0960-8524(03)00034-8.
- Bai, S., Wang, T., Tian, Z., Cao, K. and Li, J. (2020), "Facile preparation of porous biomass charcoal from peanut shell as adsorbent", Sci. Rep., 10(1), 15845. https://doi.org/10.1038/s41598-020-72721-0.
- Battas, A., El Gaidoumi, A., Ksakas, A. and Kherbeche, A. (2019), "Adsorption study for the removal of nitrate from water using local clay", Sci. World J., 2019, 9529618. https://doi.org/10.1155/2019/9529618.
- Bharathi, S.K. and Ramesh, P.S. (2012), "Equilibrium, thermodynamic and kinetic studies on adsorption of a basic dye by citrullus lanatus rind", Iran J. Energ. Environ., 3(1), 23-34. https://doi.org/10.5829/idosi.ijee.2012.03.01.0130.
- Bouberka, Z., Kacha, S., Kameche, M., ElmalehL, S. and Derriche, Z. (2005), "Sorption study of an acid dye from an aqueous solutions using modified clays", J. Hazard. Mater., 119(1-3), 117-124. https://doi.org.10.1016/j.jhazmat.2004.11.026.
- Boulaiche, W., Hamdi, B. and Trari, M. (2019), "Removal of heavy metals by chitin: Equilibrium, kinetic and thermodynamic studies", Appl. Water Sci., 9(2), 39. https://doi.org/10.1007/s13201-019-0926-8
- Briao, G.D., de Andrade, J.R., da Silva, M.G.C. and Viera. M.C.A. (2020), "Removal of toxic metals from water using chitosan-based magnetic adsorbents", Environ. Chem. Lett., 18(4), 1145-1168. https://doi.org/10.1007/s10311-020-01003-y.
- Chionyedua, T.O., Cosmas, C.U., Alechine, E.A. and Leslie, F.P. (2019), "Comparative study of the adsorption capacity of lead (II) ions onto bean husk and fish scale from aqueous solution", J. Water Reuse D., 9(3), 249-262. https://doi.org/10.2166/wrd.2019.061.
- Crini, G. and Badot, P.M. (2010), Sorption Processes and Pollution: Conventional and Non-Conventional Sorbents for Pollutant Removal From Wastewaters, Presses Universitaires de Franche-Comte, Besancon, France.
- El-Ashtoukhy, E.S.Z., Amin, N.K. and Abdelwahab, O. (2008), "Removal of lead (II) and copper (II) from aqueous solution using Pomegranate Peel as a new adsorbent", Desalination, 223(1-3), 162-173. https://doi.org/10.1016/j.desal.2007.01.206.
- Elboughdiri, N. (2020), "The use of natural zeolite to remove heavy metals Cu (II), Pb (II) and Cd (II), from industrial wastewater", Cogent Eng., 7(1),1782623. https://doi.org/10.1080/23311916.2020.1782623.
- Elovich, S.Y. and Larionov, O.G. (1962), "Theory of adsorption from nonelectrolyte solutions on solid adsorbents", Russ. Chem. Bull., 11(2), 198-203. https://doi.org/10.1007/BF00908017.
- Freundlich, H. (1907), "u ber die adsorption in losungen", Zeitschrift fur Physikalische Chemie, 57(1), 385-470. https://doi.org/10.1515/zpch-1907-5723.
- Georgescu, A.M., Nardou, F., Zichil, V. and Nistor, I.D. (2018), "Adsorption of lead (II) ions from aqueous solutions onto Cr-pillared clays", Appl. Clay Sci., 152, 44-52. https://doi.org/10.1016/j.clay.2017.10.031.
- Ghibate, R., Senhaji, O. and Taouil, R. (2021), "Kinetic and thermodynamic approaches on rhodamine b adsorption onto pomegranate peel", Case Stud. Chem. Environ. Eng., 3, 1000782. https://doi.org/10.1016/j.cscee.2020.100078.
- Hameed, B.H. (2009), "Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue", J. Hazard. Mater., 162(2-3), 939-944. https://doi.org/10.1016/j.jhazmat.2008.05.120.
- Hana, J., Nohback, P. and Hyokwan, B. (2020) "Removal of Pb (II) from wastewater by biosorption using powdered waste sludge", Membr. Water Treat., 11(1), 41-48. https://doi.org/10.12989/mwt.2020.11.1.041.
- Hashemian. S. (2011), "Kinetic and thermodynamic of adsorption of methylene blue (MB) by CuFe2O4/rice bran composite", Int. J. Phys. Sci., 6(27), 6257-6267. https://doi.org/10.5897/IJPS11.187.
- Herawati, N., Suzuki, S., Hayashi, K., Rivai, I.F. and Koyoma, H. (2000), "Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type", B. Environ. Contam. Tox., 64(1),33-39. https://doi.org/10.1007/s001289910006.
- Hospodarova, V., Singovszka, E. and Stevulova, N. (2018), "Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials", Am. J. Anal. Chem., 9(6), 303-310. https://doi.org/10.4236/ajac.2018.96023.
- Ho, Y.S. and Mckay, G. (1999), "Pseudo-second order model for sorption processes", Proc. Biochem., 34(5), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5.
- Jeongmin, H., Seungwoo, L., Dongah, K., Eunmi, K. and Yuhoon, H. (2020), "Improved adsorption performance of heavy metals by surface modification of polypropylene/polyethylene media through oxygen plasma and acrylic acid", Membr. Water Treat, 11(3), 231-235. https://doi.org/10.12989/mwt.2020.11.3.231.
- Kanan, K. and Sundaram, M.M. (2001), "Kinetics and mechanism of removal methylene blue by adsorption on the various carbons-a comparative study", Dyes Pigments, 51(1), 25-40. https://doi.org/10.1016/S0143-7208(01)00056-0
- Karthikeyan, T., Rajgopal, S., and Miranda, L.R. (2005), "Chromium (VI) adsorption from aqueous solution by hevea brasilinesis sawdust activated carbon", J. Hazard Mater, 124(1-3), 92-199. https://doi.org/10.1016/j.jhazmat.2005.05.003.
- Kataria. N., Garg, V.K., Jain. M. and Kadirvelu. K. (2016), "Preparation, characterization and potential use of flower shaped Zinc oxide nanoparticles (ZON) for the adsorption of Victoria Blue B dye from aqueous solution", Adv. Powder Technol., 27(4), 1180-1188. https://doi.org/10.1016/j.apt.2016.04.001.
- Kazak, O., Tor, A., Akin, I. and Arslan, G. (2015), "Preparation of new polysulfone capsules containing Cyanex 272 and their properties for Co (II) removal from aqueous solution", J. Environ. Chem. Eng., 3(3), 1654-1661. https://doi.org/10.1016/j.jece.2015.06.007.
- Koswojo, R., Utomo, R.P., Ju, Y.H., Ayucitra, A., Soetaredjo, F.E., Sunarso, J. and Ismadji, S. (2010), "Acid green 25 removal from wastewater by organo-bentonite from pacitan", Appl. Clay Sci., 48(1-2), 81-86. https://doi.org/10.1016/j.clay.2009.11.023.
- Lagergren, S (1898), "Zur theorie der sogenannten adsorption geloster stoffe", Kungliga Svenska Vetenskapsakademiens Handlingar, 24(1), 1-39.
- Langmuir, I. (1918), "The adsorption of gases on plane surfaces of glass, mica, and platinum", J. Am. Chem. Soc., 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004.
- Maier, R.S. and Schure, M.R. (2018), "Transport properties and size exclusion effects in wide-pore superficially porous particles", Chem. Eng. Sci., 185, 243-255. https://doi.org/10.1016/j.ces.2018.03.041.
- Mckay, G., Otterburn, M.S. and Sweeney, A.G. (1980), "The removal of colour from effluent using various adsorbents-IV. Silica: Equilibria and column studies", Water Res., 14(1), 21-27. https://doi.org/10.1016/0043-1354(80)90038-X.
- Mekhalef Benhafsa, F., Kacha, S., Leboukh, A. and et Belaid, K.D (2018) "Etude comparative de l'adsorption du colorant Victoria Bleu Basique a partir de solutions aqueuses sur du carton usage et de la sciure de bois", J. Water Sci., 31(2), 109-126. https://doi.org/10.7202/1051695ar.
- Milenkovic, D.D., Milosavljevic, M.M., Marinkovic, A.D., Dokic, V.R., Mitrovic, J.Z. and Ljbojic, A.R (2013), "Removal of copper (II) ion from aqueous solution by high-porosity activated carbon", Water S.A, 39(4), 515-522. https://doi.org/10.4314/wsa.v39i4.10.
- Mohammadi, S.Z., Karimi, M.A., Afzali, D. and Mansouri, F. (2010), "Removal of Pb (II) from aqueous solutions using activated carbon from sea-buckthorn stones by chemical activation", Desalination, 262(1-3), 86-93. https://doi.org/10.1016/j.deset al.2010.05.048.
- Nejadshafiee, V. and Islami, M.R. (2019), "Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent", Mater. Sci. Eng. C, 101, 42-52. https://doi.org/10.1016/j.msec.2019.03.081.
- Obayomi, K.S., Bello, J.O., Nnoruka, J.S., Adediran. A.A and Olajide. P.O. (2019), "Development of low-cost bio-adsorbent from agricultural waste composite for Pb (II) and As (III) sorption from aqueous solution", Cogent Eng., 6(1), 1687274. https://doi.org/10.1080/23311916.2019.1687274.
- O zcan, A., O ncu, E.M. and O zcan, A.S. (2006), "Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite", Colloid Surfaces A., 277(1-3), 90-97. https://doi.org/10.1016/j.colsurfa.2005.11.017.
- Ponnusamy, S.K. and Subramaniam, R. (2013), "Process optimization studies of Congo red dye adsorption onto cashew nutshell using response surface methodology", Int. J. Ind. Chem., 4(1), 17. https://doi.org/10.1186/2228-5547-4-17.
- Rashed, M.N., Gad, A.A. and Abdeldaiem, A.M. (2018), "Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water", Adv. Environ. Res., 7(1), 53-71. https://doi.org/10.12989/aer.2018.7.1.053
- Redlich, O. and Peterson, D.L. (1959), "A useful adsorption isotherm", J. Phys. Chem., 63(6), 1024. https://doi.org/10.1021/j150576a611.
- Sepulvida. L.A. and Santana. C.C. (2013), "Effect of solution temperature, pH and ionic strength on dye adsorption onto Magellanic peat", J. Environ. Tech., 34(8), 967-977. https://doi.org/10.1080/09593330.2012.724251.
- Shaban, M., Abukhadra, M.R., Parwaz, A.A. and Jabili, B.M. (2018), "Removal of Congo red, methylene blue and Cr (VI) ions from water using natural serpentine", J. Taiwan Inst. Chem. Eng., 82, 102-116. https://doi.org/10.1016/j.jtice.2017.10.023.
- Shirsath, D.S. and Shrivastava, V.S. (2012), "Removal of hazardous dye Ponceau-S by using chitin: An organic bioadsorbent", Afr. J. Environ. Sci. Technol., 6(2), 115-124. https://doi.org/10.5897/AJEST11.118.
- Simonin, J.P. (2016), "On the comparison of pseudo-first-order and pseudo-second-order rate laws in the modeling of adsorption kinetics", Chem. Eng. J., 300, 254-263. https://doi.org/10.1016/j.cej.2016.04.079.
- Sparks, D.L. (2003), Environmental Soil Chemistry, Elsevier, California, U.S.A.
- Sreejalekshmi, K.G., Krishnan, K.A. and Anirudhan, T.S. (2009), "Adsorption of Pb (II) and Pb (II)-citric acid on sawdust activated carbon: Kinetic and equilibrium isotherm studies", J. Hazard. Mater., 161(2-3), 1506-1513. https://doi.org/10.1016/j.jhazmat.2008.05.002.
- Srivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B. and Mishra, I.M. (2006), "Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics, and thermodynamics", Colloid Surface A., 272(1-2), 89-104. https://doi.org/10.1016/j.colsurfa.2005.07.016.
- Tran, H.N., You, S.J. and Chao, H.P. (2016), "Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study", J. Environ. Chem. Eng., 4(3), 2671-2682. https://doi.org/10.1016/j.jece.2016.05.009.
- Weber, Jr. W.J. and Morris, J.C. (1963), "Kinetics of adsorption on carbon from solution", J. Sanit. Eng. Div., 89(2), 31-59. https://doi.org/10.1061/JSEDAI.0000430
- Xia L., Huang, Z., Zhong, L., Xie, F., Tang, C. and Tsui, C. (2018), "Bagasse cellulose grafted with an amino-terminated hyperbranched polymer for the removal of Cr (VI) from aqueous solution", J. Polym., 10(8), 931. https://doi.org/10.3390/polym10080931.