Acknowledgement
This study was supported by the National Research of Korea (NRF-2021R1A2C1013611).
References
- Abu-Zeid, M.A.E.R., Zhang, L., Jin, W.Y., Feng, T., Wu, Y. and Chen, H. L. (2016), "Improving the performance of the air gap membrane distillation process by using a supplementary vacuum pump", Desalination, 384, 31-42. https://doi.org/10.1016/j.desal.2016.01.020.
- Ahmed, F.E., Hashaikeh, R. and Hilal, N. (2020), "Hybrid technologies, The future of energy efficient desalination - A review", Desalination, 495, 114659. https://doi.org/10.1016/j.desal.2020.114659.
- Ali, A., Tufa, R.A., Macedonio, F., Curcio, E. and Drioli, E. (2018), "Membrane technology in renewable-energy-driven desalination", Renew. Sust. Energ. Rev., 81, 1-21. https://doi.org/10.1016/j.rser.2017.07.047.
- Alkhudhiri, A., Darwish, N. and Hilal, N. (2012), "Membrane distillation, A comprehensive review", Desalination, 287, 2-18. https://doi.org/10.1016/j.desal.2011.08.027.
- Alsaadi, A.S., Francis, L., Maab, H., Amy, G.L. and Ghaffour, N. (2015), "Evaluation of air gap membrane distillation process running under sub-atmospheric conditions: Experimental and simulation studies", J. Membr. Sci., 489, 73-80. https://doi.org/10.1016/j.memsci.2015.04.008.
- Alsebaeai, M.K. and Ahmad, A.L. (2020), "Membrane distillation, Progress in the improvement of dedicated membranes for enhanced hydrophobicity and desalination performance", J. Ind. Eng. Chem., 86, 13-34. https://doi.org/10.1016/j.jiec.2020.03.006.
- Altaee, A., Zaragoza, G. and van Tonningen, H.R. (2014), "Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination", Desalination, 336(1), 50-57. https://doi.org/10.1016/j.desal.2014.01.002.
- Andres-Manas, J.A., Ruiz-Aguirre, A., Acien, F.G. and Zaragoza, G. (2020), "Performance increase of membrane distillation pilot scale modules operating in vacuum-enhanced air-gap configuration", Desalination, 475, 114202. https://doi.org/10.1016/j.desal.2019.114202.
- Ashoor, B.B., Mansour, S., Giwa, A., Dufour, V. and Hasan, S.W. (2016), "Principles and applications of direct contact membrane distillation (DCMD): A comprehensive review", Desalination, 398, 222-246. https://doi.org/10.1016/j.desal.2016.07.043.
- Atab, M.S., Smallbone, A.J. and Roskilly, A.P. (2016), "An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation", Desalination, 397, 174-184. https://doi.org/10.1016/j.desal.2016.06.020.
- Aziz, N.I.H.A. and Hanafiah, M.M. (2021), "Application of life cycle assessment for desalination: Progress, challenges and future directions", Environ. Pollut., 268, 115948. https://doi.org/10.1016/j.envpol.2020.115948.
- Bagheri, M., Akbari, A. and Mirbagheri, S.A. (2019), "Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques, A critical review", Proc. Safe. Environ. Protect., 123, 229-252. https://doi.org/10.1016/j.psep.2019.01.013.
- Barragan, V.M. and Pastuschuk, E. (2014), "Viscoelastic deformation of sulfonated polymeric cation-exchange membranes exposed to a pressure gradient", Mater. Chem. Phys., 146(1), 65-72. https://doi.org/10.1016/j.matchemphys.2014.02.043.
- Bhagat, S.K., Tung, T.M. and Yaseen, Z.M. (2020), "Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art, application assessment and possible future research", J. Clean. Prod., 250, 119473. https://doi.org/10.1016/j.jclepro.2019.119473.
- Blandin, G., Vervoort, H., D'Haese, A., Schoutteten, K., Bussche, J.V., Vanhaecke, L., Myat, D.T., Le-Clech, P. and Verliefde, A.R.D. (2016), "Impact of hydraulic pressure on membrane deformation and trace organic contaminants rejection in pressure assisted osmosis (PAO)", Proc. Safe. Environ. Protect., 102, 316-327. https://doi.org/10.1016/j.psep.2016.04.004.
- Caldera, U. and Breyer, C. (2020), "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems", Energy, 200, 117507. https://doi.org/10.1016/j.energy.2020.117507.
- Cerneaux, S., Struzynska, I., Kujawski, W.M., Persin, M. and Larbot, A. (2009), "Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes", J. Membr. Sci., 337(1), 55-60. https://doi.org/10.1016/j.memsci.2009.03.025.
- Choi, Y., Lee, Y., Shin, K., Park, Y. and Lee, S. (2020), "Analysis of long-term performance of full-scale reverse osmosis desalination plant using artificial neural network and tree model", Environ. Eng. Res., 25(5), 763-770. https://doi.org/10.4491/eer.2019.324.
- Damtie, M.M. and Choi, J.S. (2017), "Modeling and application of direct contact membrane distillation for fluoride removal from aqueous solutions", Desalin. Water Treat., 97, 23-40. https://doi.org/10.5004/dwt.2017.21690.
- Dolan, F., Lamontagne, J., Link, R., Hejazi, M., Reed, P. and Edmonds, J. (2021), "Evaluating the economic impact of water scarcity in a changing world", Nature Commun., 12(1), 1915. https://doi.org/10.1038/s41467-021-22194-0.
- Drioli, E., Ali, A. and Macedonio, F. (2015), "Membrane distillation, Recent developments and perspectives", Desalination, 356, 56-84. https://doi.org/10.1016/j.desal.2014.10.028.
- Ebrahimzadeh, S., Wols, B., Azzellino, A., Martijn, B.J. and van der Hoek, J.P. (2021), "Quantification and modelling of organic micropollutant removal by reverse osmosis (RO) drinking water treatment", J. Water Proc. Eng., 42, 102164. https://doi.org/10.1016/j.jwpe.2021.102164.
- El-Dessouky, H.T. and Ettouney, H.M. (2002), Fundamentals of seawater desalination, Elsevier.
- Goh, P.S., Lau, W.J., Othman, M.H.D. and Ismail, A.F. (2018), "Membrane fouling in desalination and its mitigation strategies", Desalination, 425, 130-155. https://doi.org/10.1016/j.desal.2017.10.018.
- Gonzalez, D., Amigo, J. and Suarez, F. (2017), "Membrane distillation, Perspectives for sustainable and improved desalination", Renew. Sust. Energ. Rev., 80, 238-259. https://doi.org/10.1016/j.rser.2017.05.078.
- Gostoli, C., Sarti, G.C. and Matulli, S. (1987), "Low temperature distillation through hydrophobic membranes", Sep. Sci. Technol., 22(2-3), 855-872. https://doi.org/10.1080/01496398708068986.
- Guijt, C.M., Meindersma, G.W., Reith, T. and De Haan, A.B. (2005), "Air gap membrane distillation: 2. Model validation and hollow fibre module performance analysis", Sep. Purif. Technol., 43(3), 245-255. https://doi.org/10.1016/j.seppur.2004.09.016.
- Hamdan, H., Saidy, M., Alameddine, I. and Al-Hindi, M. (2021), "The feasibility of solar-powered small-scale brackish water desalination units in a coastal aquifer prone to saltwater intrusion: A comparison between electrodialysis reversal and reverse osmosis", J. Environ. Manage., 290, 112604. https://doi.org/10.1016/j.jenvman.2021.112604.
- Ihsanullah, I., Atieh, M.A., Sajid, M. and Nazal, M.K. (2021), "Desalination and environment: A critical analysis of impacts, mitigation strategies, and greener desalination technologies", Sci. Total Environ., 780, 146585. https://doi.org/10.1016/j.scitotenv.2021.146585.
- Im, B.G., Lee, J.G., Kim, Y.D. and Kim, W.S. (2018), "Theoretical modeling and simulation of AGMD and LGMD desalination processes using a composite membrane", J. Membr. Sci., 565, 14-24. https://doi.org/10.1016/j.memsci.2018.08.006.
- Janajreh, I., El Kadi, K., Hashaikeh, R. and Ahmed, R. (2017), "Numerical investigation of air gap membrane distillation (AGMD), Seeking optimal performance", Desalination, 424, 122-130. https://doi.org/10.1016/j.desal.2017.10.001.
- Janajreh, I., Hashaikeh, R. and Hussain, M.N. (2017), "Evaluation of thermal efficiency of membrane distillation under conductive layer integration", Energy Procedia, 105, 4935-4942. https://doi.org/10.1016/j.egypro.2017.03.985.
- Jiang, X., Shao, Y., Sheng, L., Li, P. and He, G. (2021), "Membrane crystallization for process intensification and control: A review", Engineering, 7(1), 50-62. https://doi.org/10.1016/j.eng.2020.06.024.
- Kim, J., Park, K., Yang, D.R. and Hong, S. (2019), "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants", Appl. Energ., 254, 113652. https://doi.org/10.1016/j.apenergy.2019.113652.
- Kim, Y., Choi, Y., Choi, J. and Lee, S. (2021), "Powdered activated carbon (PAC) - vacuum-assisted air gap membrane distillation (V-AGMD) hybrid system to treat wastewater containing surfactants, Effect of operating conditions", Environ. Eng. Res., 26(5), 200377-200370. https://doi.org/10.4491/eer.2020.377..
- Kundzewicz, Z.W., Krysanova, V., Benestad, R.E., Hov, O ., Piniewski, M. and Otto, I.M. (2018), "Uncertainty in climate change impacts on water resources", Environ. Sci. Policy, 79, 1-8. https://doi.org/10.1016/j.envsci.2017.10.008.
- Leaper, S., Abdel-Karim, A., Gad-Allah, T.A. and Gorgojo, P. (2019), "Air-gap membrane distillation as a one-step process for textile wastewater treatment", Chem. Eng. J., 360, 1330-1340. https://doi.org/10.1016/j.cej.2018.10.209.
- Lee, S., Choi, J., Park, Y.G., Shon, H., Ahn, C.H. and Kim, S.H. (2019), "Hybrid desalination processes for beneficial use of reverse osmosis brine: Current status and future prospects", Desalination, 454, 104-111. https://doi.org/10.1016/j.desal.2018.02.002.
- Lee, C., Jang, J., Tin, N.T., Kim, S., Tang, C.Y. and Kim, I.S. (2020), "Effect of spacer configuration on the characteristics of FO membranes: Alteration of permeation characteristics by membrane deformation and concentration polarization", Environ. Sci. Technol., 54(10), 6385-6395. https://doi.org/10.1021/acs.est.9b06921.
- Missimer, T.M. and Maliva, R.G. (2018), "Environmental issues in seawater reverse osmosis desalination: Intakes and outfalls", Desalination, 434, 198-215. https://doi.org/10.1016/j.desal.2017.07.012.
- Niwa, T. (2003), "Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures", J. Chem. Inform. Comput. Sci., 43(1), 113-119. https://doi.org/10.1021/ci020013r.
- Noor, I.E., Martin, A. and Dahl, O. (2020), "Process design of industrial-scale membrane distillation system for wastewater treatment in nano-electronics fabrication facilities", MethodsX, 7, 101066. https://doi.org/10.1016/j.mex.2020.101066.
- Peters, C.D. and Hankins, N.P. (2021), "Making zero-liquid discharge desalination greener: Utilising low-grade heat and vacuum membrane distillation for the regeneration of volatile draw solutes", Desalination, 507, 115034. https://doi.org/10.1016/j.desal.2021.115034.
- Pinto, F.S. and Marques, R.C. (2017), "Desalination projects economic feasibility: A standardization of cost determinants", Renew. Sust. Energ. Rev., 78, 904-915. https://doi.org/10.1016/j.rser.2017.05.024.
- Pistocchi, A., Bleninger, T., Breyer, C., Caldera, U., Dorati, C., Ganora, D., Millan, M.M., Paton, C., Poullis, D., Herrero, F.S., Sapiano, M., Semiat, R., Sommariva, C., Yuece, S. and Zaragoza, G. (2020), "Can seawater desalination be a win-win fix to our water cycle?", Water Res., 182, 115906. https://doi.org/10.1016/j.watres.2020.115906.
- Qasim, M., Badrelzaman, M., Darwish, N.N., Darwish, N.A. and Hilal, N. (2019), "Reverse osmosis desalination, A state-of-the-art review", Desalination 459, 59-104. https://doi.org/10.1016/j.desal.2019.02.008.
- Roman, N.D., Bre, F., Fachinotti, V.D. and Lamberts, R. (2020), "Application and characterization of metamodels based on artificial neural networks for building performance simulation, A systematic review", Energ. Buildings, 217, 109972. https://doi.org/10.1016/j.enbuild.2020.109972.
- Ruiz Salmon, I. and Luis, P. (2018), "Membrane crystallization via membrane distillation", Chem. Eng. Process, 123, 258-271. https://doi.org/10.1016/j.cep.2017.11.017.
- Saadon, A., Abdullah, J., Muhammad, N.S., Ariffin, J. and Julien, P.Y. (2021), "Predictive models for the estimation of riverbank erosion rates", Catena, 196, 104917. https://doi.org/10.1016/j.catena.2020.104917.
- She, Q., Hou, D., Liu, J., Tan, K.H. and Tang, C.Y. (2013), "Effect of feed spacer induced membrane deformation on the performance of pressure retarded osmosis (PRO): Implications for PRO process operation", J. Membr. Sci., 445, 170-182. https://doi.org/10.1016/j.memsci.2013.05.061.
- Skuse, C., Gallego-Schmid, A., Azapagic, A. and Gorgojo, P. (2021), "Can emerging membrane-based desalination technologies replace reverse osmosis?", Desalination, 500, 114844. https://doi.org/10.1016/j.desal.2020.114844.
- Thomas, N., Mavukkandy, M.O., Loutatidou, S. and Arafat, H.A. (2017), "Membrane distillation research & implementation, Lessons from the past five decades", Sep. Purif. Technol., 189, 108-127. https://doi.org/10.1016/j.seppur.2017.07.069.
- Tijing, L.D., Woo, Y.C., Choi, J.S., Lee, S., Kim, S.H. and Shon, H.K. (2015), "Fouling and its control in membrane distillation-A review", J. Membr. Sci., 475, 215-244. https://doi.org/10.1016/j.memsci.2014.09.042.
- Ullah, R., Khraisheh, M., Esteves, R.J., McLeskey Jr, J.T., AlGhouti, M., Gad-el-Hak, M. and Tafreshi, H.V. (2018), "Energy efficiency of direct contact membrane distillation", Desalination, 433, 56-67. https://doi.org/10.1016/j.desal.2018.01.025.
- Usman, H.S., Touati, K. and Rahaman, M.S. (2021), "An economic evaluation of renewable energy-powered membrane distillation for desalination of brackish water", Renew. Energ., 169, 1294-1304. https://doi.org/10.1016/j.renene.2021.01.087.
- Yang, C., Peng, X., Zhao, Y., Wang, X., Cheng, L., Wang, F., Li, Y. and Li, P. (2019), "Experimental study on VMD and its performance comparison with AGMD for treating copper-containing solution", Chem. Eng. Sci., 207, 876-891. https://doi.org/10.1016/j.ces.2019.07.013.
- Yuan, Z., Wei, L., Afroze, J. D., Goh, K., Chen, Y., Yu, Y., She, Q. and Chen, Y. (2019), "Pressure-retarded membrane distillation for low-grade heat recovery: The critical roles of pressure-induced membrane deformation", J. Membr. Sci., 579, 90-101. https://doi.org/10.1016/j.memsci.2019.02.045.
- Zhao, S., Liao, Z., Fane, A., Li, J., Tang, C., Zheng, C., Lin, J. and Kong, L. (2021), "Engineering antifouling reverse osmosis membranes: A review", Desalination, 499, 114857. https://doi.org/10.1016/j.desal.2020.114857.