DOI QR코드

DOI QR Code

Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load

  • Alazwari, Mashhour A. (Mechanical Engineering Dept., Faculty of Engineering, King Abdulaziz University) ;
  • Esen, Ismail (Department of Mechanical Engineering, Karabuk University) ;
  • Abdelrahman, Alaa A. (Mechanical Design and Prod. Dept., Faculty of Engineering, Zagazig University) ;
  • Abdraboh, Azza M. (Physics Department, Faculty of Science, Benha University) ;
  • Eltaher, Mohamed A. (Mechanical Engineering Dept., Faculty of Engineering, King Abdulaziz University)
  • 투고 : 2020.09.08
  • 심사 : 2021.10.13
  • 발행 : 2022.03.25

초록

Dynamic behavior of temperature-dependent Reddy functionally graded (RFG) nanobeam subjected to thermomagnetic effects under the action of moving point load is carried out in the present work. Both symmetric and sigmoid functionally graded material distributions throughout the beam thickness are considered. To consider the significance of strain-stress gradient field, a material length scale parameter (LSP) is introduced while the significance of nonlocal elastic stress field is considered by introducing a nonlocal parameter (NP). In the framework of the nonlocal strain gradient theory (NSGT), the dynamic equations of motion are derived through Hamilton's principle. Navier approach is employed to solve the resulting equations of motion of the functionally graded (FG) nanoscale beam. The developed model is verified and compared with the available previous results and good agreement is observed. Effects of through-thickness variation of FG material distribution, beam aspect ratio, temperature variation, and magnetic field as well as the size-dependent parameters on the dynamic behavior are investigated. Introduction of the magnetic effect creates a hardening effect; therefore, higher values of natural frequencies are obtained while smaller values of the transverse deflections are produced. The obtained results can be useful as reference solutions for future dynamic and control analysis of FG nanobeams reinforced nanocomposites under thermomagnetic effects.

키워드

과제정보

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (D-180-135-1442). The authors, therefore, gratefully acknowledge DSR technical and financial support.

참고문헌

  1. Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendy, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.
  2. Abdelrahman, A.A. and Eltaher, M.A. (2020), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01211-8.
  3. Abdelrahman, A. A., Mohamed, N. A. and Eltaher, M. A. (2020a), "Static bending of perforated nanobeams including surface energy and microstructure effects", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01149-x.
  4. Abdelrahman, A.A., Abd-El-Mottaleb, H.E. and Eltaher, M.A. (2020b), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6), 765-779. https://doi.org/10.12989/sem.2020.76.6.765.
  5. Abdelrahman, A.A., Esen, I., O zarpa, C. and Eltaher, M.A. (2021a), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Model., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008.
  6. Abdelrahman, A.A., Esen, I. and Eltaher, M.A. (2021b), "Vibration response of timoshenko perforated microbeams under accelerating load and thermal environment", Appl. Math. Comput., 407, 126307. https://doi.org/10.1016/j.amc.2021.126307.
  7. Abdelrahman, A.A., Esen, I., O zarpa, C., Shaltout, R., Eltaher, M.A., and Assie, A.E, (2021c), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. https://doi.org/10.12989/sss.2021.28.4.515.
  8. Abo-Bakr, R.M., Eltaher, M.A. and Attia, M.A. (2020), "Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01146-0.
  9. Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2021a), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258, 113370. https://doi.org/10.1016/j.compstruct.2020.113370.
  10. Abo-Bakr, R.M., Abo-Bakr, H.M., Mohamed, S.A. and Eltaher, M.A. (2021b), "Optimal weight for buckling of FG beam under variable axial load using Pareto optimality", Compos. Struct., 258, 113193. https://doi.org/10.1016/j.compstruct.2020.113193.
  11. Ahn, J. and Rail, Z. (2021), "A rod-beam system with dynamic contact and thermal exchange condition", Appl. Math. Comput., 388, 125542. https://doi.org/10.1016/j.amc.2020.125542.
  12. Al-shujairi, M. and Mollamahmutoglu, C . (2018), "Buckling and free vibration analysis of functionally graded sandwich microbeams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect", Compos. Part B Eng., 154, 292-312. https://doi.org/10.1016/j.compositesb.2018.08.103.
  13. Alizadeh Hamidi, B., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), "An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories", J. Therm. Stress., 43(2), 157-174. https://doi.org/10.1080/01495739.2019.1666694.
  14. Arani, A.G. and Jalaei, M.H. (2017), "Investigation of the longitudinal magnetic field effect on dynamic response of viscoelastic graphene sheet based on sinusoidal shear deformation theory", Physica B, 506, 94-104. https://doi.org/10.1016/j.physb.2016.11.004.
  15. Arefi, M., Pourjamshidian, M. and Ghorbanpour Arani, A. (2018). "Nonlinear free and forced vibration analysis of embedded functionally graded sandwich micro beam with moving mass", J. Sandw. Struct. Mater., 20(4), 462-492. https://doi.org/10.1177/1099636216658895.
  16. Assie, A., Akbas, S.D., Bashiri, A.H., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Vibration response of perforated thick beam under moving load", Eur. Phys. J. Plus, 136(3), 1-15. https://doi.org/10.1140/epjp/s13360-021-01224-2.
  17. Attia, M.A. and Abdelrahman, A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  18. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  19. Azrar, A., Said, M.B., Azrar, L. and Aljinaidi, A.A. (2019), "Dynamic instability analysis of magneto-electro-elastic beams with uncertain parameters under static and parametric electric and magnetic fields", Compos. Struct., 226, 111185. https://doi.org/10.1016/j.compstruct.2019.111185.
  20. Barati, M.R. (2017), "Dynamic response of porous functionally graded material nanobeams subjected to moving nanoparticle based on nonlocal strain gradient theory", Mater. Res. Express, 4(11), 115017. https://doi.org/10.1088/2053-1591/aa9765.
  21. Barati, M.R., Faleh, N.M. and Zenkour, A.M. (2019), "Dynamic response of nanobeams subjected to moving nanoparticles and hygro-thermal environments based on nonlocal strain gradient theory", Mech. Adv. Mater. Struct., 26(19), 1661-1669. https://doi.org/10.1080/15376494.2018.1444234.
  22. Barati, A., Hadi, A., Nejad, M. Z. and Noroozi, R. (2020), "On vibration of bi-directional functionally graded nanobeams under magnetic field", Mech. Based Des. Struct., 1-18. https://doi.org/10.1080/15397734.2020.1719507.
  23. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279. https://doi.org/10.12989/anr.2018.6.3.279.
  24. Daikh, A.A., Drai, A., Houari M.S.A, and Eltaher, M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.64.
  25. Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021a), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
  26. Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021b), "Buckling analysis of CNTRC curved sandwich nanobeams in thermal environment", Appl. Sci., 11(7), 3250. https://doi.org/10.3390/app11073250.
  27. Devarajan, B. and Kapania, R.K. (2020), "Thermal buckling of curvilinearly stiffened laminated composite plates with cutouts using isogeometric analysis", Compos. Struct., 238, 111881. https://doi.org/10.1016/j.compstruct.2020.111881.
  28. Devarajan, B. (2021), "Free vibration analysis of curvilinearly stiffened composite plates with an arbitrarily shaped cutout using isogeometric analysis", arXiv preprint arXiv:2104.12856.
  29. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/sem.2021.80.1.063.
  30. Duraffourg, L. and Arcamone, J. (2015), Nanoelectromechanical Systems, John Wiley & Sons, Inc., New Jersey, U.S.A.
  31. Ebrahimi, F. and Barati, M.R. (2016a), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4.
  32. Ebrahimi, F. and Barati, M.R. (2016b), "Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position, J. Therm. Stress., 39(10), 1210-1229. https://doi.org/10.1080/01495739.2016.1215726.
  33. Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24(3), 549-564. https://doi.org/10.1177/1077546316646239.
  34. Eglin, M., Eriksson, M.A. and Carpick, R.W. (2006), "Microparticle manipulation using inertial forces", Appl. Phys. Lett., 88(9), 091913. https://doi.org/10.1063/1.2172401.
  35. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
  36. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013b), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.
  37. Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014a), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028.
  38. Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A. (2014b), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Comput., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072.
  39. Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020a), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141.
  40. Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020b), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.
  41. Eltaher, M.A. and Mohamed, N. (2020), "Nonlinear stability and vibration of imperfect CNTs by doublet mechanics", Appl. Math. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311.
  42. Emam, S.A., Eltaher, M.A., Khater, M.E. and Abdalla, W.S. (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238.
  43. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  44. Esen, I. (2019), "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", Int. J. Mech. Sci., 153, 21-35. https://doi.org/10.1016/j.ijmecsci.2019.01.033.
  45. Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Dynamics analysis of Timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7.
  46. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021a), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5.
  47. Esen, I., O zarpa, C. and Eltaher, M.A. (2021b), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552.
  48. Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021c), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2021.1904255.
  49. Esen, I., Daikh, A.A. and Eltaher, M.A. (2021d), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Eur. Phys. J. Plus, 136(4), 1-22. https://doi.org/10.1140/epjp/s13360-021-01419-7.
  50. Hamed, M.A., Eltaher, M.A., Sadoun, A.M. and Almitani, K.H. (2016), "Free vibration of symmetric and sigmoid functionally graded nanobeams", Appl. Phys. A, 122(9), 829. https://doi.org/10.1007/s00339-016-0324-0.
  51. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  52. Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
  53. Jalaei, M.H., Arani, A.G. and Nguyen-Xuan, H. (2019), "Investigation of thermal and magnetic field effects on the dynamic instability of FG Timoshenko nanobeam employing nonlocal strain gradient theory", Int. J. Mech. Sci., 161, 105043. https://doi.org/10.1016/j.ijmecsci.2019.105043.
  54. Jalaei, M.H. and Civalek, O . (2019), "A nonlocal strain gradient refined plate theory for dynamic instability of embedded graphene sheet including thermal effects, Compos. Struct., 220, 209-220. https://doi.org/10.1016/j.compstruct.2019.03.086.
  55. Jankowski, P., Zur, K.K., Kim, J., Lim, C.W. and Reddy, J.N. (2021), "On the piezoelectric effect on stability of symmetric FGM porous nanobeams", Compos. Struct., 267, 113880. https://doi.org/10.1016/j.compstruct.2021.113880.
  56. Jazi, S.H. (2020), "Nonlinear vibration of an elastically connected double Timoshenko nanobeam system carrying a moving particle based on modified couple stress theory", Arch. Appl. Mech., 1-16. https://doi.org/10.1007/s00419-020-01746-8.
  57. Lal, R. and Dangi, C. (2021), "Dynamic analysis of bi-directional functionally graded Timoshenko nanobeam on the basis of Eringen's nonlocal theory incorporating the surface effect", Appl. Math. Comput., 395, 125857. https://doi.org/10.1016/j.amc.2020.125857.
  58. Le, C.I., Le, N.A.T. and Nguyen, D.K. (2020), "Free vibration and buckling of bidirectional functionally graded sandwich beams using an enriched third-order shear deformation beam element", Compos. Struct., 113309. https://doi.org/10.1016/j.compstruct.2020.113309.
  59. Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011.
  60. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  61. Lin, F., Tong, L.H., Shen, H.S., Lim, C.W. and Xiang, Y. (2020), "Assessment of first and third order shear deformation beam theories for the buckling and vibration analysis of nanobeams incorporating surface stress effects", Int. J. Mech. Sci., 186, 105873. https://doi.org/10.1016/j.ijmecsci.2020.105873.
  62. Lu, L., She, G.L., and Guo, X. (2021a), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  63. Lu, L., Wang, S., Li, M., and Guo, X. (2021b), "Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets", Compos. Struct., 272(15), 114231. https://doi.org/10.1016/j.compstruct.2021.114231.
  64. Mahmoud, F.F., Eltaher, M.A., Alshorbagy, A.E. and Meletis, E.I. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Technol., 26(11), 3555-3563. https://doi.org/10.1007/s12206-012-0871-z.
  65. Maneshi, M.A., Ghavanloo, E. and Fazelzadeh, S.A. (2018), "Closed-form expression for geometrically nonlinear large deformation of nano-beams subjected to end force", Eur. Phys. J. Plus, 133(7), 1-10. https://doi.org/10.1140/epjp/i2018-12084-0.
  66. Melaibari, A., Khoshaim, A.B., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel Compos. Struct., 35(5), 671-685. https://doi.org/10.12989/scs.2020.35.5.671.
  67. Mirnezhad, M., Ansari, R. and Falahatgar, S.R. (2020), "Quantum effects on the mechanical properties of fine-scale CNTs: An approach based on DFT and molecular mechanics model", Eur. Phys. J. Plus, 135(11), 1-71. https://doi.org/10.1140/epjp/s13360-020-00878-8.
  68. Najafi, F., Shojaeefard, M.H. and Googarchin, H.S. (2017), "Nonlinear dynamic response of FGM beams with Winkler-Pasternak foundation subject to noncentral low velocity impact in thermal field", Compos. Struct., 167, 132-143. http://doi.org/10.1016/j.compstruct.2017.01.063.
  69. Nguyen, D.K., Nguyen, Q.H., Tran, T.T. and Bui, V.T. (2017), "Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load", Acta Mechanica, 228(1), 141-155. https://doi.org/10.1007/s00707-016-1705-3.
  70. Ni, Y., Zhu, S., Sun, J., Tong, Z., Zhou, Z. and Xu, X. (2020), "Analytical buckling solution of magneto-electro-thermo-elastic cylindrical shells under multi-physics fields", Compos. Struct., 239, 112021. https://doi.org/10.1016/j.compstruct.2020.112021
  71. Rahmani, O. and Jandaghian, A.A. (2015), "Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory", Appl. Phys. A, 119(3), 1019-1032. https://doi.org/10.1007/s00339-015-9061-z.
  72. Rajasekaran, S. and Khaniki, H. B. (2019), "Size-dependent forced vibration of non-uniform bi-directional functionally graded beams embedded in variable elastic environment carrying a moving harmonic mass", Appl. Math. Model., 72, 129-154. https://doi.org/10.1016/j.apm.2019.03.021.
  73. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  74. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  75. Ren, S., Meng, G., Nie, B., Zhou, L. and Zhao, H. (2020), "A novel stabilized node-based smoothed radial point interpolation method (SNS-RPIM) for coupling analysis of magneto-electro-elastic structures in hygrothermal environment", Comput. Method Appl. M., 365, 112975. https://doi.org/10.1016/j.cma.2020.112975.
  76. Roudbari, M.A., Jorshari, T.D., Arani, A.G., Lu, C. and Rabczuk, T. (2020), "Transient responses of two mutually interacting single-walled boron nitride nanotubes induced by a moving nanoparticle", Eur. J. Mech. A Solids, 82, 103978. https://doi.org/10.1016/j.euromechsol.2020.103978.
  77. Safaei, B., Ahmed, N.A. and Fattahi, A.M. (2019), "Free vibration analysis of polyethylene/CNT plates", Eur. Phys. J. Plus, 134(6), 271. https://doi.org/10.1140/epjp/i2019-12650-x.
  78. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene-nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  79. She, G.L. (2021a), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305, https://doi.org/10.1080/01495739.2021.1974323.
  80. Sobhy, M. and Zenkour, A.M. (2018). Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate. Compos. Part B Eng., 154, 492-506. https://doi.org/10.1016/j.compositesb.2018.09.011.
  81. Touloukian, Y.S. (1966), "Thermophysical properties of high temperature solid materials, volume 5. nonoxides and their solutions and mixtures, including miscellaneous ceramic materials", Thermophysical and Electronic Properties Information Analysis Center Lafayette, Purdue University, Indiana, U.S.A.
  82. Xie, K., Wang, Y. and Fu, T. (2020), "Nonlinear vibration analysis of third-order shear deformable functionally graded beams by a new method based on direct numerical integration technique", Int. J. Mech. Mater. Des., 16(4), 839-855. https://doi.org/10.1007/s10999-020-09493-y.
  83. Yayli, M.O . (2015a), "Buckling analysis of a rotationally restrained single walled carbon nanotube", Acta Physica Polonica A, 127(3), 678-683. https://doi.org/10.12693/APhysPolA.127.678.
  84. Yayli, M.O . (2015b), "Stability analysis of gradient elastic microbeams with arbitrary boundary conditions", J. Mech. Sci. Technol., 29(8), 3373-3380. https://doi.org/10.1007/s12206-015-0735-4.
  85. Yayli, M.O . (2016a). "Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions", Micro Nano Lett., 11(11), 741-745. https://doi.org10.1049/mnl.2016.0257.
  86. Yayli, M.O (2016b), "An efficient solution method for the longitudinal vibration of nanorods with arbitrary boundary conditions via a hardening nonlocal approach", J. Vib. Control, 24(11), 2230-2246. https://doi.org/10.1177/1077546316684042.
  87. Yayli, M.O . (2018a), "Torsional vibrations of restrained nanotubes using modified couple stress theory", Microsyst. Technol., 24(8), 3425-3435. https://doi.org/10.1007/s00542-018-3735-3.
  88. Yayli, M.O . (2018b), "On the torsional vibrations of restrained nanotubes embedded in an elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 40(9), 1-12. https://doi.org/10.1007/s40430-018-1346-7.
  89. Yayli, M.O . (2018c), "Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory", Micro Nano Lett., 13(5), 595-599. https://doi.org/10.1049/mnl.2017.0751
  90. Yayli, M.O . (2019), "Effects of rotational restraints on the thermal buckling of carbon nanotube", Micro Nano Lett., 14(2), 158-162. https://doi.org/10.1049/mnl.2018.5428
  91. Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M., and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
  92. Zhang, X.L., Xu, Q., Zhao, X., Li, Y.H. and Yang, J. (2020), "Nonlinear analyses of magneto-electro-elastic laminated beams in thermal environments", Compos. Struct., 234, 111524. https://doi.org/10.1016/j.compstruct.2019.111524.