Acknowledgement
The research described in this paper was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grants Number JP21K14250, JP21H01433, JP18K04368 and JP18H03796.
References
- Akbari, H. and Namin, M. (2013), "Moving particle method for modeling wave interaction with porous structures", Coast. Eng., 74, 59-73. https://doi.org/10.1016/j.coastaleng.2012.12.002
- Akbari, H. (2014), "Modified moving particle method for modeling wave interaction with multi layered porous structures", Coast. Eng., 89, 1-19. https://doi.org/10.1016/j.coastaleng.2014.03.004
- Akbari, H. and Taherkhani, A. (2019), "Numerical study of wave interaction with a composite breakwater located on permeable bed", Coast. Eng., 146, 1-13. https://doi.org/10.1016/j.coastaleng.2018.12.006
- Akbari, H. and Pooyarad, A. (2020), "Wave force on protected submarine pipelines over porous and impermeable beds using SPH numerical model", Appl. Ocean Res., 98, 102118. https://doi.org/10.1016/j.apor.2020.102118
- Bandara, S. and Soga, K. (2015), "Coupling of soil deformation and pore fluid flow using material point method", Comput. Geotech., 63, 199-214. https://doi.org/10.1016/j.compgeo.2014.09.009
- Basser, H., Rudman, M. and Daly, E. (2017), "SPH modelling of multi-fluid lock-exchange over and within porous media", Adv. Water Resour., 108, 15-28. https://doi.org/10.1016/j.advwatres.2017.07.011
- Bui, H.H. and Nguyen, G.D. (2017), "A coupled fluid-solid SPH approach to modelling flow through deformable porous media", Int. J. Solids Struct., 125, 244-264. https://doi.org/10.1016/j.ijsolstr.2017.06.022
- Chorin, A.J. (1968), "Numerical solution of the Navier-Stokes equations", Math. Comp., 22, 745-762. https://doi.org/10.1090/S0025-5718-1968-0242392-2
- Chorin, A.J. and Marsden, J.E. (1993), A Mathematical Introduction to Fluid Mechanics, Springer, ISBN: 978-0387979182, 172pp.
- Darcy, H. (1856), Les fontaines publiques de la ville de dijon. Victor Dalmont, pp. 647.
- Drew, D.A. (1983), "Mathematical modeling of two-phase flows", Annu. Rev. Fluid. Mech., 15, 261-291. https://doi.org/10.1146/annurev.fl.15.010183.001401
- Drumheller, D.S. (2000), "On theories for reacting immiscible mixtures", Int. J. Eng. Sci., 8, 347-382. https://doi.org/10.1016/S0020-7225(99)00047-6
- Farrokhnejad, M. (2013), Numerical Modeling of Solidification Process and Prediction of Mechanical Properties in Magnesium Alloys, Ph.D. Dissertation, The University of Western Ontario, Electronic Thesis and Dissertation Repository. 1459.
- Forchheimer, P. (1901), Wasserbewegung durch Boden. Zeitschrift des Vereins Deutscher Ingenieure 45, 1782-1788.
- Fu, L. and Jin, Y. (2018), "Macroscopic particle method for channel flow over porous bed", Eng. Appl. Comput. Fluid Mech., 12(1), 13-27. https://doi.org/10.1080/19942060.2017.1331866
- Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics: theory and application to non-spherical stars", Mon. Not. R. Astron. Soc., 181, 375-389. https://doi.org/10.1093/mnras/181.3.375
- Gotoh, H., Shibahara, T. and Sakai, T. (2001), "Sub-Particle-Scale turbulence model for the MPS method-Lagrangian flow model for hydraulic engineering", Comput. Fluid Dyn. J., 9(4), 339-347.
- Gotoh, H. and Khayyer, A. (2018), "On the state-of-the-art of particle methods for coastal and ocean engineering", Coast. Eng., 60(1), 79-103. https://doi.org/10.1080/21664250.2018.1436243
- Gotoh, H. (2018), Ryushiho, Morikita Shuppan, ISBN-10: 4627922310. (in Japanese)
- Gotoh, H., Khayyer, A. and Shimizu, Y. (2021), "Entirely Lagrangian meshfree computational methods for hydroelastic fluid-structure interactions in ocean engineering-Reliability, adaptivity and generality", Appl. Ocean Res., 115, 102822. https://doi.org/10.1016/j.apor.2021.102822
- Gotoh, H. (2022), Nagare no houteishiki, Morikita Shuppan, ISBN-10: 4627676719. (in Japanese)
- Gui, Q., Dong, P., Shao, S. and Chen, Y. (2015), "Incompressible SPH simulation of wave interaction with porous structure", Ocean Eng., 110, 126-139. https://doi.org/10.1016/j.oceaneng.2015.10.013
- Harada, E, Ikari, H, Khayyer, A. and Gotoh, H. (2019), "Numerical simulation for swash morphodynamics by DEM-MPS coupling model", Coast. Eng., 61(1), 2-14. https://doi.org/10.1080/21664250.2018.1554203
- Harada, E., Ikari, H, Tazaki, T. and Gotoh, H. (2021), "Numerical simulation for coastal morphodynamics using DEM-MPS method", Appl. Ocean Res., 117, 102905. https://doi.org/10.1016/j.apor.2021.102905
- Ikari, H., Yamano, T. and Gotoh, H. (2020), "Multiphase particle method using an elastoplastic solid phase model for the diffusion of dumped sand from a split hopper", Comp. Fluid., 208, 104639. https://doi.org/10.1016/j.compfluid.2020.104639
- Kazemi, E., Tait, S. and Shao, S. (2019), "SPH-based numerical treatment of the interfacial interaction of flow with porous media", Int. J. Numer. Meth. Fl., 92, 219-245. https://doi.org/10.1002/fld.4781
- Kazemi, E., Koll, K., Tait, S. and Shao, S. (2020), "SPH modelling of turbulent open channel flow over and within natural gravel beds with rough interfacial boundaries", Adv. Water Res., 140, 103557. https://doi.org/10.1016/j.advwatres.2020.103557
- Khayyer, A. and Gotoh, H. (2009), "Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure", Coast. Eng., 56, 419-440. https://doi.org/10.1016/j.coastaleng.2008.10.004
- Khayyer, A. and Gotoh, H. (2010), "A Higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method", Appl. Ocean Res., 32(1), 124-131. https://doi.org/10.1016/j.apor.2010.01.001
- Khayyer, A. and Gotoh, H. (2011), "Enhancement of stability and accuracy of the moving particle semi-implicit method", J. Comput. Phys., 230, 3093-3118. https://doi.org/10.1016/j.jcp.2011.01.009
- Khayyer, A., Gotoh, H., Falahaty, H, Shimizu, Y. and Nishijima, K. (2017a), "Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D hydroelastic slamming", Ocean Syst. Eng., 7(3), 299-318. https://doi.org/10.12989/ose.2017.7.3.299
- Khayyer, A., Gotoh, H., Shimizu, Y., Gotoh, K. and Shao, S. (2017b), "An enhanced particle method for simulation of fluid flow interactions with saturated porous media", J. Japan Soc. Civil Engineers, Ser. B2 (coastal Engineering). 73, I_841-I_846. https://doi.org/10.2208/kaigan.73.I_841
- Khayyer, A., Gotoh, H. and Shimizu, Y. (2017c), "Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context", J. Comput. Phys., 332, 236-256. https://doi.org/10.1016/j.jcp.2016.12.005
- Khayyer, A., Gotoh, H., Shimizu, Y., Gotoh, K., Falahaty, H. and Shao, S. (2018a), "Development of a projection-based SPH method for numerical wave flume with porous media of variable porosity", Coast. Eng., 140, 1-22. https://doi.org/10.1016/j.coastaleng.2018.05.003
- Khayyer, A., Gotoh, H., Falahaty, H. and Shimizu, Y. (2018b), "An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions", Comput. Phys. Commun., 232, 139-164. https://doi.org/10.1016/j.cpc.2018.05.012
- Khayyer, A., Tsuruta, N., Shimizu, Y. and Gotoh, H. (2019a), "Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering", Appl. Ocean Res., 82, 397-414. https://doi.org/10.1016/j.apor.2018.10.020
- Khayyer, A., Gotoh, H. and Shimizu, Y. (2019b), "A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields", Comp. Fluid., 179, 356-371. https://doi.org/10.1016/j.compfluid.2018.10.018
- Khayyer, A., Shimizu, Y., Gotoh, H. and Hattori, S. (2021a), "Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering", Ocean Eng., 226, 108652. https://doi.org/10.1016/j.oceaneng.2021.108652
- Khayyer, A., Gotoh, H., Shimizu, Y. and Nishijima, Y. (2021b), "A 3D Lagrangian meshfree projection-based solver for hydroelastic Fluid-Structure Interactions", J. Fluid. Struct., 105, 103342. https://doi.org/10.1016/j.jfluidstructs.2021.103342
- Khayyer, A., Shimizu, Y., Gotoh, H. and Nagashima, K. (2021c), "A coupled incompressible SPH-Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures", Appl. Math. Model., 94, 242-271. https://doi.org/10.1016/j.apm.2021.01.011
- Kim, K.S. and Kim, M.H. (2018), "Simulation of viscous and inviscid rayleigh-taylor instability with surface tension by using MPS", Ocean Syst. Eng., 8(2), 167-182. https://doi.org/10.12989/OSE.2018.8.2.167
- Koshizuka, S. and Oka, Y. (1996), "Moving particle semi-implicit method for fragmentation of incompressible fluid", Nucl. Sci. Eng., 123, 421-434. https://doi.org/10.13182/nse96-a24205
- Larese, A., Rossi, R. and Onate, E. (2012), "A coupled PFEM-Eulerian approach for the solution of porous FSI problems", Comput. Mech., 50, 805-819. https://doi.org/10.1007/s00466-012-0768-9
- Larese, A., Rossi, R. and Onate, E. (2015), "Finite element modeling of free surface ow in variable porosity media", Arch. Comput. Method. Eng., 22(4), 637-653. https://doi.org/10.1007/s11831-014-9140-x
- Luo, M., Khayyer, A. and Lin, P. (2021), "Particle methods in ocean and coastal engineering", Appl. Ocean Res., 114, 102734. https://doi.org/10.1016/j.apor.2021.102734
- Liu, P.L.F., Lin, P., Chang, K.A. and Sakakiyama, T. (1999), "Numerical modeling of wave interaction with porous structures", J. Waterw. Port Coast. Ocean Eng., 125(6), 322-330. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:6(322)
- Losada, I.J., Lara, J.L. and Jesus, M.D. (2016), "Modeling the interaction of water waves with porous coastal structures", J. Waterw. Port, Coastal, Ocean Eng., 142(6), 03116003. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000361
- Lucy, L.B. (1977), "A numerical approach to the testing of fission hypothesis", Astron. J., 82, 1013-1024. https://doi.org/10.1086/112164
- Matsunaga, T. and Koshizuka, S. (2022), "Stabilized LSMPS method for complex free-surface flow simulation", Comp. Meth. Appl. Mech. Eng., 389(1), 114416. https://doi.org/10.1016/j.cma.2021.114416
- Monaghan, J.J. (1992), "Smoothed particle hydrodynamics", Ann. Rev. Astron. Astrophys., 30, 543-574. https://doi.org/10.1146/annurev.aa.30.090192.002551
- Moran, R. (2013), Mejora de la seguridad de las presas de escollera frente a percolacion accidental mediante protecciones tipo rapie. PhD Thesis: Universidad Politecnica de Madrid, Madrid, Spain.
- Nguyen, H.X., Dinh, V.N. and Basu, B. (2021), "A comparison of smoothed particle hydrodynamics simulation with exact results from a nonlinear water wave model", Ocean Syst. Eng., 11(2), 185-201.
- Ni, J. and Beckermann, C. (1991), "A volume-averaged two-phase model for transport phenomena during solidification", Metall. Trans. B 22B, 349-361.
- Pahar, G. and Dhar, A. (2016), "Modeling free-surface flow in porous media with modified incompressible SPH", Eng. Anal. Bound. Elem., 68, 75-85. https://doi.org/10.1016/j.enganabound.2016.04.001
- Pahar, G. and Dhar, A. (2017), "On modification of pressure gradient operator in integrated ISPH for multifluid and porous media flow with free-surface", Eng. Anal. Bound. Elem., 80, 38-48. https://doi.org/10.1016/j.enganabound.2017.02.015
- Peng, C., Xu, G., Wu, W., Yu, H.S. and Wang, C. (2017), "Multiphase SPH modeling of free surface flow in porous media with variable porosity", Comput. Geotech., 81, 239-248. https://doi.org/10.1016/j.compgeo.2016.08.022
- Pitman, B. and Le, L. (2005), "A two-fluid model for avalanche and debris flows", Philos. T. R. Soc. A, 363, 1573-1601. https://doi.org/10.1098/rsta.2005.1596
- Ren, B., Wen, H., Dong, P. and Wang, Y. (2014), "Numerical simulation of wave interaction with porous structures using an improved smoothed particle hydrodynamic method", Coast. Eng., 88, 88-100. https://doi.org/10.1016/j.coastaleng.2014.02.006
- Ren, B., Wen, H., Dong, P. and Wang, Y. (2016), "Improved SPH simulation of wave motions and turbulent flows through porous media", Coast. Eng., 107, 14-27. https://doi.org/10.1016/j.coastaleng.2015.10.004
- Shao, S. and Lo, E.Y.M. (2003), "Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface", Adv. Water Resour., 26, 787-800. https://doi.org/10.1016/S0309-1708(03)00030-7
- Shao, S. (2010), "Incompressible SPH flow model for wave interactions with porous media", Coast. Eng., 57(3), 304-316. https://doi.org/10.1016/j.coastaleng.2009.10.012
- Shimizu, Y. and Gotoh, H. (2016), "Toward enhancement of MPS method for ocean engineering: Effect of time-integration schemes", Int. J. Offshore Polar Eng., 26(4), 378-384. https://doi.org/10.17736/ijope.2016.mk46
- Shimizu, Y., Gotoh, H. and Khayyer, A. (2018), "An MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle concept", Comp. Math. Appl., 76, 1108-1129. https://doi.org/10.1016/j.camwa.2018.06.002
- Shimizu, Y., Khayyer, A., Gotoh, H. and Nagashima, K. (2020), "An enhanced multiphase ISPH-based method for accurate modeling of oil spill", Coast. Eng. J., 62(4), 625-646. https://doi.org/10.1080/21664250.2020.1815362
- Shimizu, Y., Khayyer, A. and Gotoh, H. (2021), "An SPH-based fully-Lagrangian meshfree implicit FSI solver with high-order discretization terms", Eng. Anal. Bound. Elem. (accepted)
- Sun, P.N., Colagrossi, A., Marrone, S., Antuono, M. and Zhang, A.M. (2019), "A consistent approach to particle shifting in the δ-Plus-SPH model", Comp. Meth. Appl. Mech. Eng., 348, 912-934. https://doi.org/10.1016/j.cma.2019.01.045
- Tazaki, T., Harada, E. and Gotoh, H. (2021), "Vertical sorting process in oscillating water tank using DEM-MPS coupling model", Coast. Eng., 165, 103765. https://doi.org/10.1016/j.coastaleng.2020.103765
- Tsurudome, C., Liang, D., Shimizu, Y., Khayyer, A. and Gotoh, H. (2020), "Incompressible SPH simulation of solitary wave propagation on permeable beaches", J. Hydrodyn., 32, 664-671. https://doi.org/10.1007/s42241-020-0042-0
- Tsurudome, C., Liang, D., Shimizu, Y., Khayyer, A. and Gotoh, H. (2021), "Study of beach permeability's influence on solitary wave runup with ISPH method", Appl. Ocean Res., 117.
- Tsuruta, N., Khayyer, A. and Gotoh, H. (2013), "A short note on dynamic stabilization of moving particle semi-implicit method", Comp. Fluid., 82, 158-164. https://doi.org/10.1016/j.compfluid.2013.05.001
- Tsuruta, N., Gotoh, H., Suzuki, K., Ikari, H. and Shimosako, K. (2019), "Development of PARISPHERE as the particle-based numerical wave flume for coastal engineering problems", Coast. Eng., 61(1), 41-62. https://doi.org/10.1080/21664250.2018.1560683
- Vacondio, R., Altomare, C., De Leffe, M., Hu, X.Y., Le Touze, D., Lind, S., Maronglu, J.C., Marrone, S., Rogers, B.D. and Souto-Iglesias, A. (2021), "Grand challenges for Smoothed Particle Hydrodynamics numerical schemes", Comp. Part. Mech., 8, 575-588. https://doi.org/10.1007/s40571-020-00354-1
- Wendland, H. (1995), "Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree", Adv. Comp. Math., 4, 389-396. https://doi.org/10.1007/BF02123482
- Wen, H., Ren, B. and Wang, G. (2018), "3D SPH porous flow model for wave interaction with permeable structures", Appl. Ocean Res., 75, 223-233. https://doi.org/10.1016/j.apor.2018.04.003
- Wen, H., Ren, B., Dong, P. and Zhu, G. (2020a), "Numerical analysis of wave-induced current within the inhomogeneous coral reef using a refined SPH model", Coast. Eng., 156, 103616. https://doi.org/10.1016/j.coastaleng.2019.103616
- Wen, H., Ren, B., Zhu, G. and Wang, G. (2020b), "SPH evaluation of the hydrodynamic consequences induced by reef degradation", Wave Motion, 96, 102579. https://doi.org/10.1016/j.wavemoti.2020.102579