DOI QR코드

DOI QR Code

Effect of Different Conditions of Sodium Chloride Treatment on the Characteristics of Kenaf Fiber-Epoxy Composite Board

  • SETYAYUNITA, Tamaryska (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada Jl) ;
  • WIDYORINI, Ragil (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada Jl) ;
  • MARSOEM, Sri Nugroho (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada Jl) ;
  • IRAWATI, Denny (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada Jl)
  • Received : 2021.11.18
  • Accepted : 2022.02.15
  • Published : 2022.03.25

Abstract

Currently, biofibers are used as a reinforcement in polymer composites for structural elements and construction materials instead of the synthetic fibers which cause environmental problems and are expensive. One of the chemicals with a pH close to neutral that can be potentially used as a modified fiber material is sodium chloride (NaCl). Therefore, this study aims to investigate the characteristics of a composite board made from NaCl-treated kenaf fiber. A completely randomized design method was used with consideration of two factors: the content of NaCl in the treatment solution (1 wt%, 3 wt%, and 5 wt%) and the duration of immersion of fibers in the solution (1 h, 2 h, and 3 h). The NaCl treatment was conducted by soaking the fibers in the solution for different durations. The fibers were then rinsed with water until the pH of the water reached 7 and subsequently dried inside an oven at 80℃ for 6 h. Kenaf fiber and epoxy were mixed manually with the total loading of 20 wt% based on the dry weight of the fiber. Physical and mechanical properties of the fibers were then evaluated based on JIS A 5908 particleboard standards. The results showed that increasing NaCl content in the fiber treatment solution can increase the physical and mechanical properties of the composite board. The properties of fibers treated with 5 wt% NaCl for 3 h were superior with a modulus of elasticity of 2.085 GPa, modulus of rupture of 19.77 MPa, internal bonding of 1.8 MPa, thickness swelling of 3%, and water absorption of 10.9%. The contact angle of untreated kenaf fibers was 104°, which increased to 80° and 73° on treatment with 1 wt% and 5 wt% NaCl for 3 h, respectively.

Keywords

Acknowledgement

We appreciate the financial support of the PMDSU Program (2960/UN1.DITLIT/DIT-LIT/LT/2019) from the Ministry of Research, Technology, and Higher Education in this research.

References

  1. Akhtar, M.N., Sulong, A.B., Radzi, M.K.F., Ismail, N.F., Raza, M.R., Muhamad, N., Khan, M.A. 2016. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of aplications. Progress in Natural Science: Materials International 26(6): 657-664. https://doi.org/10.1016/j.pnsc.2016.12.004
  2. Anuar, H., Zuraida, A. 2011. Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fibre. Composites Part B: Engineering 42(3): 462-465. https://doi.org/10.1016/j.compositesb.2010.12.013
  3. Asim, M., Jawaid, M., Abdan, K., Ishak, M.R. 2018. The effect of silane treated fibre loading on mechanical properties of pineapple leaf/kenaf fibre filler phenolic composites. Journal of Polymers and the Environment 26(4): 1520-1527. https://doi.org/10.1007/s10924-017-1060-z
  4. Aziz, S.H., Ansell, M.P. 2004. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 - polyester resin matrix. Composites Science and Technology 64(9): 1219-1230. https://doi.org/10.1016/j.compscitech.2003.10.001
  5. Aziz, S.H., Ansell, M.P., Clarke, S.J., Panteny, S.R. 2005. Modified polyester resins for natural fibre composites. Composites Science and Technology 65(3-4): 525-535. https://doi.org/10.1016/j.compscitech.2004.08.005
  6. Azwa, Z.N., Yousif, B.F. 2013. Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polymer Degradation and Stability 98(12): 2752-2759. https://doi.org/10.1016/j.polymdegradstab.2013.10.008
  7. Chandrasekar, M., Ishak, M.R., Sapuan, S.M., Leman, Z., Jawaid, M. 2017. A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plastics, Rubber and Composites 46(3): 119-136. https://doi.org/10.1080/14658011.2017.1298550
  8. d'Almeida, J.R.M. 2006. Analysis of cost and flexural strength performance of natural fiber-polyester composites. Polymer-Plastics Technology and Engineering 40(2): 205-215. https://doi.org/10.1081/PPT-100000065
  9. Davoodi, M.M., Sapuan, S.M., Ahmad, D., Ali, A., Khalina, A., Jonoobi, M. 2010. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Materials & Design 31(10): 4927-4932. https://doi.org/10.1016/j.matdes.2010.05.021
  10. El-Shekeil, Y.A., Sapuan, S.M., Abdan, K., Zainudin, E.S. 2012a. Influence of fiber content on the mechanical and thermal properties of kenaf fiber reinforced thermoplastic polyurethane composites. Materials & Design 40: 299-303. https://doi.org/10.1016/j.matdes.2012.04.003
  11. El-Shekeil, Y.A., Sapuan, S.M., Khalina, A., Zainudin, E.S., Al-Shuja'a, O.M. 2012b. Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite. Express Polymer Letters 6(12): 1032-1040. https://doi.org/10.3144/expresspolymlett.2012.108
  12. Geethamma, V.G., Thomas, S. 2005. Diffusion of water and artificial seawater through coir fiber reinforced natural rubber composites. Polymer Composites 26(2): 136-143. https://doi.org/10.1002/pc.20086
  13. Ghori, S.W., Rao, G.S. 2021. Fiber loading of date palm and kenaf reinforced epoxy composites: Tensile, impact and morphological properties. Journal of Renewable Materials 9(7): 1283-1292. https://doi.org/10.32604/jrm.2021.014987
  14. Hamidon, M.H., Sultan, M.T.H., Ariffin, A.H., Shah, A.U.M. 2019. Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: A review. Journal of Materials Research and Technology 8(3): 3327-3337. https://doi.org/10.1016/j.jmrt.2019.04.012
  15. Hong, C.K., Hwang, I., Kim, N., Park, D.H., Hwang, B.S., Nah, C. 2008. Mechanical properties of silanized jute-polypropylene composites. Journal of Industrial and Engineering Chemistry 14(1): 71-76. https://doi.org/10.1016/j.jiec.2007.07.002
  16. Horvath, T., Kalman, E., Kutsan, G., Rauscher, A. 1994. Corrosion of mild steel in hydrochloric acid solutions containing organophosphonic acids. British Corrosion Journal 29(3): 215-218. https://doi.org/10.1179/000705994798267683
  17. Hwang, J.W., Oh, S.W. 2020. Properties of board manufactured from sawdust, ricehusk and charcoal. Journal of the Korean Wood Science and Technology 48(1): 61-75. https://doi.org/10.5658/WOOD.2020.48.1.61
  18. Ishak, M., Leman, Z., Sapuan, S., Salleh, M., Misri, S. 2009. The effect of sea water treatment on the impact and flexural strength of sugar palm fibre reinforced epoxy composites. International Journal of Mechanical and Materials Engineering 4(3): 316-320.
  19. Iswanto, A.H., Hakim, A.R., Azhar, I., Wirjosentono, B., Prabuningrum, D.S. 2020. The physical, mechanical, and sound absorption properties of sandwich particleboard (SPb). Journal of the Korean Wood Science and Technology 48(1): 32-40. https://doi.org/10.5658/WOOD.2020.48.1.32
  20. Jamaludin, M.A., Bahari, S.A., Zakaria, M.N., Saipolbahri, N.S. 2020. Influence of rice straw, bagasse, and their combination on the properties of binderless particleboard. Journal of the Korean Wood Science and Technology 48(1): 22-31. https://doi.org/10.5658/WOOD.2020.48.1.22
  21. Japanese Standard Association. 2003. Japanese Industrial Standard for Particleboard: JIS A 5908. Japanese Standard Association, Tokyo, Japan.
  22. John, M.J., Francis, B., Varughese, K.T., Thomas, S. 2008. Effect of chemical modification on properties of hybrid fiber biocomposites. Composites Part A: Applied Science and Manufacturing 39(2): 352-363. https://doi.org/10.1016/j.compositesa.2007.10.002
  23. Khan, J.A., Khan, M.A. 2015. 1 The Use of Jute Fibers as Reinforcements in Composites. In: Biofiber Reinforcements in Composite Materials, Ed. by Faruk, O. and Sain, M., Woodhead, Oxford, UK.
  24. Liu, W., Mohanty, A.K., Askeland, P., Drzal, L.T., Misra, M. 2004. Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites. Polymer 45: 7589-7596. https://doi.org/10.1016/j.polymer.2004.09.009
  25. Mahjoub, R., Yatim, J.M., Mohd Sam, A.R., Hashemi, S.H. 2014. Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials 55: 103-113. https://doi.org/10.1016/j.conbuildmat.2014.01.036
  26. Mardin, H., Wardana, I.N.G., Kusno, K., Wahyono, P.S. 2016a. Sea water effects on surface morphology and interfacial bonding of sugar palm fiber to sago matrix. Key Engineering Materials 724: 39-42. https://doi.org/10.4028/www.scientific.net/KEM.724.39
  27. Mardin, H., Wardana, I.N.G., Pratikto, Suprapto, W., Kamil, K. 2016b. Effect of sugar palm fiber surface on interfacial bonding with natural sago matrix. Advances in Materials Science and Engineering 2016: 9240416.
  28. Mat Taib, R., Ramarad, S., Ishak, M., Rozman, H.D. 2009. Effect of immersion time in water on the tensile properties of acetylated steam-exploded acacia mangium fibers-filled polyethylene composites. Journal of Thermoplastic Composite Materials 22(1): 83-98. https://doi.org/10.1177/0892705708091609
  29. Munawar, S.S., Umemura, K., Tanaka, F., Kawai, S. 2008. Effects of alkali, mild steam, and chitosan treatments on the properties of pineapple, ramie, and sansevieria fiber bundles. Journal of Wood Science 54(1): 28-35. https://doi.org/10.1007/s10086-007-0903-y
  30. Mwaikambo, L.Y., Ansell, M.P. 2006. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. Hemp fibres. Journal of Materials Science 41(8): 2483-2496. https://doi.org/10.1007/s10853-006-5098-x
  31. Nosbi, N., Md Akil, H., Mohd Ishak, Z.A., Abu Bakar, A. 2011. Behavior of kenaf fibers after immersion in several water conditions. BioResources 6(2): 950-960.
  32. Osman, E., Vakhguelt, A., Sbarski, I., Mutasher, S. 2011. Mechanical properties of kenaf unsaturated polyester composites: Effect of fiber treatment and fiber length. Advanced Materials Research 311-313: 260-271. https://doi.org/10.4028/www.scientific.net/AMR.311-313.260
  33. Paul, A., Joseph, K., Thomas, S. 1997. Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Composites Science and Technology 57(1): 67-79. https://doi.org/10.1016/S0266-3538(96)00109-1
  34. Rai, B., Kumar, G., Diwan, R.K., Khandal, R.K. 2011. Study on effect of euphorbia coagulum on physicomechanical and fire retardant properties of polyester-banana fiber composite. Indian Journal of Science and Technology 4(4): 443-446. https://doi.org/10.17485/ijst/2011/v4i4.6
  35. Ramanaiah, K., Ratna Prasad, A.V., Hema Chandra Reddy, K. 2012. Effect of fiber loading on mechanical properties of borassus seed shoot fiber reinforced polyester composites. Journal of Materials and Environmental Science 3(2): 374-378.
  36. Rashdi, A.A.A., Sapuan, S.M., Ahmad, M.M.H.M., Khalina, A. 2009. Water absorption and tensile properties of soil buried kenaf fibre reinforced unsaturated polyester composites (KFRUPC). Journal of Food, Agriculture & Environment 7(3-42): 908-911.
  37. Rashdi, A.A.A., Sapuan, S.M., Ahmad, M.M.H.M., Khalina, A. 2010. Combined effects of water absorption due to water immersion, soil buried and natural weather on mechanical properties of kenaf fibre unsaturated polyester composites (KFUPC). International Journal of Mechanical and Materials Engineering 5(1): 11-17.
  38. Saba, N., Paridah, M.T., Abdan, K., Ibrahim, N.A. 2016. Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Construction and Building Materials 123: 15-26. https://doi.org/10.1016/j.conbuildmat.2016.06.131
  39. Sapuan, S.M., Mustapha, F., Majid, D.L., Leman, Z., Ariff, A.H.M., Ariffin, M.K.A., Zuhri, M.Y.M., Ishak, M.R., Sahari, J. 2011. Water retention in kenaf/polypropylene composites due to repeated immersion and drying conditions. Key Engineering Materials 471-472: 438-443. https://doi.org/10.4028/www.scientific.net/KEM.471-472.438
  40. Sharba, M.J., Leman, Z., Sultan, M.T.H., Ishak, M.R., Azmah Hanim, M.A. 2015. Effects of kenaf fiber orientation on mechanical properties and fatigue life of glass/kenaf hybrid composites. BioResources 11(1): 1448-1465.
  41. Sivakumar, D., Ng, L.F., Lau, S.M., Lim, K.T. 2018. Fatigue life behaviour of glass/kenaf woven-ply polymer hybrid biocomposites. Journal of Polymers and the Environment 26(2): 499-507. https://doi.org/10.1007/s10924-017-0970-0
  42. Tajvidi, M., Najafi, S.K., Shekaraby, M.M., Motiee, N. 2006. Effect of chemical reagents on the mechanical properties of natural fiber polypropylene composites. Polymer Composites 27(5): 563-569. https://doi.org/10.1002/pc.20227
  43. Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E., Verpoest, I. 2003. Influence of processing and chemical treatment of flax fibres on their composites. Composites Science and Technology 63(9): 1241-1246. https://doi.org/10.1016/S0266-3538(03)00093-9
  44. Wibowo, E.S., Lubis, M.A.R., Park, B.D. 2021. Simultaneous improvement of formaldehyde emission and adhesion of medium-density fiberboard bonded with low-molar ratio urea-formaldehyde resins modified with nanoclay. Journal of the Korean Wood Science and Technology 49(5): 453-461. https://doi.org/10.5658/WOOD.2021.49.5.453
  45. Yahaya, R., Sapuan, S.M., Jawaid, M., Leman, Z., Zainudin, E.S. 2015. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf-aramid hybrid laminated composites. Materials & Design 67: 173-179. https://doi.org/10.1016/j.matdes.2014.11.024
  46. Yousif, B.F., Shalwan, A., Chin, C.W., Ming, K.C. 2012. Flexural properties of treated and untreated kenaf/epoxy composites. Materials & Design 40: 378-385. https://doi.org/10.1016/j.matdes.2012.04.017
  47. Yousif, B.F., Wong, K.J., El-Tayeb, N.S.M. 2007. An investigation on tensile, compression and flexural properties of natural fibre reinforced polyester composites. In: Seattle, WA, USA, ASME 2007 International Mechanical Engineering Congress and Exposition (IMECE 2007), pp. 619-624.
  48. Yusoff, R.B., Takagi, H., Nakagaito, A.N. 2016. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Industrial Crops and Products 94: 562-573. https://doi.org/10.1016/j.indcrop.2016.09.017