Acknowledgement
This research was supported by the SNUBH Research Fund (No. 09-2019-006).
References
- Cho SJ, Sunwoo L, Baik SH, Bae YJ, Choi BS, Kim JH. Brain metastasis detection using machine learning: a systematic review and meta-analysis. Neuro Oncol 2021;23:214-225 https://doi.org/10.1093/neuonc/noaa232
- Zhou Z, Sanders JW, Johnson JM, et al. Computer-aided detection of brain metastases in T1-weighted MRI for stereotactic radiosurgery using deep learning single-shot detectors. Radiology 2020;295:407-415 https://doi.org/10.1148/radiol.2020191479
- Choi KS, Choi SH, Jeong B. Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network. Neuro Oncol 2019;21:1197-1209 https://doi.org/10.1093/neuonc/noz095
- Bae S, Choi YS, Ahn SS, et al. Radiomic MRI phenotyping of glioblastoma: improving survival prediction. Radiology 2018;289:797-806 https://doi.org/10.1148/radiol.2018180200
- Tamada D, Kromrey ML, Ichikawa S, Onishi H, Motosugi U. Motion artifact reduction using a convolutional neural network for dynamic contrast enhanced MR imaging of the liver. Magn Reson Med Sci 2020;19:64-76 https://doi.org/10.2463/mrms.mp.2018-0156
- Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw 1989;2:359-366 https://doi.org/10.1016/0893-6080(89)90020-8
- Arpit D, Jastrzebski S, Ballas N, et al. A closer look at memorization in deep networks. In International Conference on Machine Learning: PMLR, 2017:233-242
- Grigorescu S, Trasnea B, Cocias T, Macesanu G. A survey of deep learning techniques for autonomous driving. J Field Robot 2020;37:362-386 https://doi.org/10.1002/rob.21918
- Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-2410 https://doi.org/10.1001/jama.2016.17216
- Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-118 https://doi.org/10.1038/nature21056
- Lee D, Lee J, Ko J, Yoon J, Ryu K, Nam Y. Deep learning in MR image processing. Investig Magn Reson Imaging 2019;23:81-99 https://doi.org/10.13104/imri.2019.23.2.81
- Cole EB, Zhang Z, Marques HS, Edward Hendrick R, Yaffe MJ, Pisano ED. Impact of computer-aided detection systems on radiologist accuracy with digital mammography. AJR Am J Roentgenol 2014;203:909-916 https://doi.org/10.2214/AJR.12.10187
- Kim HE, Kim HH, Han BK, et al. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. Lancet Digit Health 2020;2:e138-e148 https://doi.org/10.1016/s2589-7500(20)30003-0
- Patel RR, Mehta MP. Targeted therapy for brain metastases: improving the therapeutic ratio. Clin Cancer Res 2007;13:1675-1683 https://doi.org/10.1158/1078-0432.CCR-06-2489
- Andrews DW, Scott CB, Sperduto PW, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 2004;363:1665-1672 https://doi.org/10.1016/S0140-6736(04)16250-8
- Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector. In European conference on computer vision: Springer, 2016:21-37
- Grovik E, Yi D, Iv M, Tong E, Rubin D, Zaharchuk G. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI. J Magn Reson Imaging 2020;51:175-182 https://doi.org/10.1002/jmri.26766
- Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-ResNet and the impact of residual connections on learning. In:Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, California, USA: AAAI Press, 2017: 4278-4284
- Bashyam VM, Erus G, Doshi J, et al. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. Brain 2020;143:2312-2324 https://doi.org/10.1093/brain/awaa160
- Rauschecker AM, Rudie JD, Xie L, et al. Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain MRI. Radiology 2020;295:626-637 https://doi.org/10.1148/radiol.2020190283
- Kim Y, Lee KJ, Sunwoo L, et al. Deep learning in diagnosis of maxillary sinusitis using conventional radiography. Invest Radiol 2019;54:7-15 https://doi.org/10.1097/RLI.0000000000000503
- Jeon Y, Lee K, Sunwoo L, et al. Deep learning for diagnosis of paranasal sinusitis using multi-view radiographs. Diagnostics (Basel) 2021;11
- Lee KJ, Ryoo I, Choi D, Sunwoo L, You SH, Jung HN. Performance of deep learning to detect mastoiditis using multiple conventional radiographs of mastoid. PLoS One 2020;15:e0241796 https://doi.org/10.1371/journal.pone.0241796
- Kim T, Heo J, Jang DK, et al. Machine learning for detecting moyamoya disease in plain skull radiography using a convolutional neural network. EBioMedicine 2019;40:636-642 https://doi.org/10.1016/j.ebiom.2018.12.043
- Yu Y, Xie Y, Thamm T, et al. Use of deep learning to predict final ischemic stroke lesions from initial magnetic resonance imaging. JAMA Netw Open 2020;3:e200772 https://doi.org/10.1001/jamanetworkopen.2020.0772
- Ho KC, Speier W, Zhang H, Scalzo F, El-Saden S, Arnold CW. A machine learning approach for classifying ischemic stroke onset time from imaging. IEEE Trans Med Imaging 2019;38:1666-1676 https://doi.org/10.1109/tmi.2019.2901445
- Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 2014;312:2551-2561 https://doi.org/10.1001/jama.2014.13806
- Jo T, Nho K, Saykin AJ. Deep learning in Alzheimer's disease: diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci 2019;11:220 https://doi.org/10.3389/fnagi.2019.00220
- Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014;5:4006 https://doi.org/10.1038/ncomms5006
- Mazurowski MA. Radiogenomics: what it is and why it is important. J Am Coll Radiol 2015;12:862-866 https://doi.org/10.1016/j.jacr.2015.04.019
- Choi YS, Bae S, Chang JH, et al. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol 2021;23:304-313 https://doi.org/10.1093/neuonc/noaa177
- Kim JY, Park JE, Jo Y, et al. Incorporating diffusion-and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol 2019;21:404-414 https://doi.org/10.1093/neuonc/noy133
- Shim KY, Chung SW, Jeong JH, et al. Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI. Sci Rep 2021;11:9974 https://doi.org/10.1038/s41598-021-89218-z
- Yun J, Park JE, Lee H, Ham S, Kim N, Kim HS. Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma. Sci Rep 2019;9:5746 https://doi.org/10.1038/s41598-019-42276-w
- Bae S, An C, Ahn SS, et al. Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation. Sci Rep 2020;10:12110 https://doi.org/10.1038/s41598-020-68980-6
- Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J Radiol 2019;20:1124-1137 https://doi.org/10.3348/kjr.2018.0070
- Chang PD, Malone HR, Bowden SG, et al. A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol 2017;38:890-898 https://doi.org/10.3174/ajnr.A5112
- Wang G, Ye JC, Mueller K, Fessler JA. Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 2018;37:1289-1296 https://doi.org/10.1109/tmi.2018.2833635
- Lao J, Chen Y, Li ZC, et al. A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 2017;7:10353 https://doi.org/10.1038/s41598-017-10649-8
- Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23:1231-1251 https://doi.org/10.1093/neuonc/noab106
- Singh G, Manjila S, Sakla N, et al. Radiomics and radiogenomics in gliomas: a contemporary update. Br J Cancer 2021;125:641-657 https://doi.org/10.1038/s41416-021-01387-w
- Han Y, Sunwoo L, Ye JC. k-space deep learning for accelerated MRI. IEEE Trans Med Imaging 2020;39:377-386 https://doi.org/10.1109/tmi.2019.2927101
- Chung H, Cha E, Sunwoo L, Ye JC. Two-stage deep learning for accelerated 3D time-of-flight MRA without matched training data. Med Image Anal 2021;71:102047 https://doi.org/10.1016/j.media.2021.102047
- Kim B, Kim DH, Park SH, Kim J, Lee JG, Ye JC. CycleMorph: cycle consistent unsupervised deformable image registration. Med Image Anal 2021;71:102036 https://doi.org/10.1016/j.media.2021.102036
- Dashtbani Moghari M, Zhou L, Yu B, et al. Efficient radiation dose reduction in whole-brain CT perfusion imaging using a 3D GAN: performance and clinical feasibility. Phys Med Biol 2021;66
- Lee D, Kim J, Moon W-J, Ye JC. CollaGAN: collaborative GAN for missing image data imputation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:2487-2496
- Park JS, Lim E, Choi SH, Sohn CH, Lee J, Park J. Model-based high-definition dynamic contrast enhanced MRI for concurrent estimation of perfusion and microvascular permeability. Med Image Anal 2020;59:101566 https://doi.org/10.1016/j.media.2019.101566
- Choi KS, You SH, Han Y, Ye JC, Jeong B, Choi SH. Improving the reliability of pharmacokinetic parameters at dynamic contrast-enhanced MRI in astrocytomas: a deep learning approach. Radiology 2020;297:178-188 https://doi.org/10.1148/radiol.2020192763
- Kim KH, Choi SH, Park SH. Improving arterial spin labeling by using deep learning. Radiology 2018;287:658-666 https://doi.org/10.1148/radiol.2017171154
- Knoll F, Zbontar J, Sriram A, et al. fastMRI: a publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning. Radiol Artif Intell 2020;2:e190007 https://doi.org/10.1148/ryai.2020190007
- Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV. VoxelMorph: a learning framework for deformable medical image registration. IEEE Transactions on Medical Imaging 2019;38:1788-1800 https://doi.org/10.1109/tmi.2019.2897538
- Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 2011;54:2033-2044 https://doi.org/10.1016/j.neuroimage.2010.09.025
- Kang E, Koo HJ, Yang DH, Seo JB, Ye JC. Cycle-consistent adversarial denoising network for multiphase coronary CT angiography. Med Phys 2019;46:550-562 https://doi.org/10.1002/mp.13284
- Brady SL, Trout AT, Somasundaram E, Anton CG, Li Y, Dillman JR. Improving image quality and reducing radiation dose for pediatric CT by using deep learning reconstruction. Radiology 2021;298:180-188 https://doi.org/10.1148/radiol.2020202317
- Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol 2016;37:1192-1198 https://doi.org/10.3174/ajnr.A4615
- Jin CB, Kim H, Liu M, et al. Deep CT to MR synthesis using paired and unpaired data. Sensors 2019;19:2361 https://doi.org/10.3390/s19102361
- Lei Y, Harms J, Wang T, et al. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Med Phys 2019;46:3565-3581 https://doi.org/10.1002/mp.13617
- Titano JJ, Badgeley M, Schefflein J, et al. Automated dee-pneural-network surveillance of cranial images for acute neurologic events. Nat Med 2018;24:1337-1341 https://doi.org/10.1038/s41591-018-0147-y
- Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 2018;392:2388-2396 https://doi.org/10.1016/S0140-6736(18)31645-3
- Kuo W, Hne C, Mukherjee P, Malik J, Yuh EL. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc Natl Acad Sci U S A 2019;116:22737-22745 https://doi.org/10.1073/pnas.1908021116
- Lee H, Yune S, Mansouri M, et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng 2019;3:173-182 https://doi.org/10.1038/s41551-018-0324-9
- Liu F, Jang H, Kijowski R, Zhao G, Bradshaw T, McMillan AB. A deep learning approach for 18F-FDG PET attenuation correction. EJNMMI Phys 2018;5:24 https://doi.org/10.1186/s40658-018-0225-8
- Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology 2018;286:676-684 https://doi.org/10.1148/radiol.2017170700
- Lin L, Dou Q, Jin YM, et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology 2019;291:677-686 https://doi.org/10.1148/radiol.2019182012
- Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010;28:1963-1972 https://doi.org/10.1200/JCO.2009.26.3541
- Kickingereder P, Isensee F, Tursunova I, et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 2019;20:728-740 https://doi.org/10.1016/S1470-2045(19)30098-1
- Cho J, Kim YJ, Sunwoo L, et al. Deep learning-based computer-aided detection system for automated treatment response assessment of brain metastases on 3D MRI. Front Oncol 2021;11:739639 https://doi.org/10.3389/fonc.2021.739639
- Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800-809 https://doi.org/10.1148/radiol.2017171920
- Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 2019;20:405-410 https://doi.org/10.3348/kjr.2019.0025
- Kim HY, Cho SJ, Sunwoo L, et al. Classification of true progression after radiotherapy of brain metastasis on MRI using artificial intelligence: a systematic review and meta-analysis. Neurooncol Adv 2021;3:vdab080
- Mateen BA, Liley J, Denniston AK, Holmes CC, Vollmer SJ. Improving the quality of machine learning in health applications and clinical research. Nat Mach Intell 2020;2:554-556 https://doi.org/10.1038/s42256-020-00239-1
- Sounderajah V, Ashrafian H, Aggarwal R, et al. Developing specific reporting guidelines for diagnostic accuracy studies assessing AI interventions: the STARD-AI Steering Group. Nat Med 2020;26:807-808 https://doi.org/10.1038/s41591-020-0941-1
- Harvey H, Oakden-Rayner L. Guidance for interventional trials involving artificial intelligence. Radiol Artif Intell 2020;2:e200228 https://doi.org/10.1148/ryai.2020200228