참고문헌
- Afzali-Naniz, O. and Mazloom, M. (2019), "Assessment of the influence of micro- and nano-silica on the behavior of selfcompacting lightweight concrete using full factorial design", Asian J. Civil Eng., 20(1), 57-70. https://doi.org/10.1007/s42107-018-0088-2.
- Ahmad, S., Pilakoutas, K., Rafi, M.M. and Zaman, Q.U. (2018), "Bond strength prediction of steel bars in low strength concrete by using ANN", Comput. Concrete, 22(2), 249-259. https://doi.org/10.12989/cac.2018.22.2.249.
- Al-Shamiri, A.K., Kim, J.H., Yuan, T.F. and Yoon, Y.S. (2019), "Modeling the compressive strength of high-strength concrete: An extreme learning approach", Constr. Build. Mater., 208, 204-219. https://doi.org/10.1016/j.conbuildmat.2019.02.165.
- Al-Shamiri, A.K., Yuan, T.F. and Kim, J.H. (2020), "Non-tuned machine learning approach for predicting the compressive strength of high-performance concrete", Mater., 13(5), https://doi.org/10.3390/ma13051023.
- Alabduljabbar, H., Haido, J.H., Alyousef, R., Yousif, S.T., McConnell, J., Wakil, K. and Jermsittiparsert, K. (2020), "Prediction of the flexural behavior of corroded concrete beams using combined method", Struct., 25, 1000-1008. https://doi.org/10.1016/j.istruc.2020.03.057.
- Alcin, O .F., Sengur, A. and Ince, M.C. (2015), "Forward-backward pursuit based sparse extreme learning machine", J. Faculty Eng. Arch. Gazi Univ., 30(1), 111-117.
- Alcin, O.F., Sengur, A., Ghofrani, S. and Ince, M.C. (2014), "GA-SELM: Greedy algorithms for sparse extreme learning machine", Meas. J. Int. Meas. Confed., 55, 126-132. https://doi.org/10.1016/j.measurement.2014.04.012.
- Alhawat, M. and Ashour, A. (2019), "Bond strength between corroded steel reinforcement and recycled aggregate concrete", Struct., 19, 369-385. https://doi.org/10.1016/j.istruc.2019.02.001.
- Almusallam, A.A. (2001), "Effect of degree of corrosion on the properties of reinforcing steel bars", Constr. Build. Mater., 15(8), 361-368. https://doi.org/10.1016/S0950-0618(01)00009-5.
- Almusallam, A.A., Al-Gahtani, A.S. and Aziz, A.R. (1996), "Effect of reinforcement corrosion on bond strength", Constr. Build. Mater., 10(2), 123-129. https://doi.org/10.1016/0950-0618(95)00077-1.
- Asif, S.A., Ahmed, N., Hayat, A., Hussan, S., Shabbir, F. and Mehmood, K. (2018), "Study of adhesion characteristics of different bitumen-aggregate combinations using bitumen bond strength test", J. Chinese Inst. Eng. Transac. Chinese Inst. Eng. Ser. A, 41(5), 430-440. https://doi.org/10.1080/02533839.2018.1490205.
- Atis, C.D., Tanyildizi, H. and Karahan, O. (2009), "Statistical analysis for strength properties of polypropylene-fibre-reinforced fly ash concrete", Mag. Concrete Res., 61(7), 557-566. https://doi.org/10.1680/macr.2007.00033.
- Auyeung, Y., Balaguru, P. and Chung, L. (2000), "Bond behavior of corroded reinforcement bars", ACI Struct. J., 97(2), 214-220. https://doi.org/10.14359/826.
- Bertolini, L., Elsener, B., Redaelli, E. and Polder, R. (2013), Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair: Second Edition, Wiley-VCH. https://doi.org/10.1002/9783527651696.
- Chung, L., Jay Kim, J.H. and Yi, S.T. (2008), "Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars", Cement Concrete Compos., 30(7), 603-611. https://doi.org/10.1016/j.cemconcomp.2008.03.006.
- Concha, N.C. (2019), "Bond strength prediction model of corroded reinforcement in concrete using neural network", Int. J. Geomate, 16(54), https://doi.org/10.21660/2019.54.4785.
- Concha, N.C. and Oreta, A.W.C. (2019), "Investigation of the effects of corrosion on bond strength of steel in concrete using neural network", Advances in Structural Engineering and Mechanics, Jeju, September.
- Dauji, S. and Bhargava, K. (2018), "Neural estimation of bond strength degradation in concrete affected by reinforcement corrosion", INAE Lett., 3(4), 203-215. https://doi.org/10.1007/s41403-018-0050-3.
- Deng, F., He, Y., Zhou, S., Yu, Y., Cheng, H. and Wu, X. (2018), "Compressive strength prediction of recycled concrete based on deep learning", Constr. Build. Mater., 175, 562-569. https://doi.org/10.1016/j.conbuildmat.2018.04.169.
- Dutta, S., Ramachandra Murthy, A., Kim, D. and Samui, P. (2017), "Prediction of compressive strength of self-compacting concrete using intelligent computational modeling GPR and RVM-based predictions of surface and hole quality in drilling of AISI D2 cold work tool steel view project call for chapter : Risk, reliability", CMC-Comput. Mater. Continua, 53(2), 167-185.
- Fan, Y. and Hu, Z. (2007), "Application of artificial neural network in prediction of bond property between corroded reinforcement and concrete", Proceedings-Fourth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2007, 4, 664-668. https://doi.org/10.1109/FSKD.2007.177.
- Fan, Y. and Hu, Z. (2007), "Application of artificial neural network in prediction of bond property between corroded reinforcement and concrete", Fourth International Conference on Fuzzy Systems and Knowledge Discovery, August.
- Fang, C., Lundgren, K., Chen, L. and Zhu, C. (2004), "Corrosion influence on bond in reinforced concrete", Cement Concrete Res., 34(11), 2159-2167. https://doi.org/10.1016/j.cemconres.2004.04.006.
- Gers, F.A., Schmidhuber, J. and Cummins, F. (1999), "Learning to forget: Continual prediction with LSTM", IEE Conference Publication, 2, 850-855. https://doi.org/10.1049/cp:19991218.
- Gers, F.A., Schraudolph, N.N. and Schmidhuber, J. (2003), "Learning precise timing with LSTM recurrent networks", J. Machine Learn. Res., 3(1), 115-143. https://doi.org/10.1162/153244303768966139.
- Guneyisi, E.M., Mermerdas, K. and Gultekin, A. (2016), "Evaluation and modeling of ultimate bond strength of corroded reinforcement in reinforced concrete elements", Mater. Struct. Mater. Constr., 49(8), 3195-3215. https://doi.org/10.1617/s11527-015-0713-4.
- Hoang, N.D., Tran, X.L. and Nguyen, H. (2020), "Predicting ultimate bond strength of corroded reinforcement and surrounding concrete using a metaheuristic optimized least squares support vector regression model", Neural Comput. Appl., 32(11), 7289-7309. https://doi.org/10.1007/s00521-019-04258-x.
- Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Comput., 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.
- Horrigmoe, G., Saether, I., Antonsen, R. and Arntsen, B. (2007), "Laboratory investigations of steel bar corrosion in concrete: Sustainable bridges background document SB3. 10".
- Huang, G. Bin, Zhu, Q.Y. and Siew, C.K. (2006), "Extreme learning machine: Theory and applications", Neurocomput., 70(1-3), 489-501. https://doi.org/10.1016/j.neucom.2005.12.126.
- Imam, A., Anifowose, F. and Azad, A.K. (2015), "Residual strength of corroded reinforced concrete beams using an adaptive model based on ANN", Int. J. Concrete Struct. Mater., 9(2), 159-172. https://doi.org/10.1007/s40069-015-0097-4.
- Jang, Y., Ahn, Y. and Kim, H.Y. (2019), "Estimating compressive strength of concrete using deep convolutional neural networks with digital microscope images", J. Comput. Civil Eng., 33(3), https://doi.org/10.1061/(ASCE)CP.1943-5487.0000837.
- Karahan, O., Tanyildizi, H. and Atis, C.D. (2008), "An artificial neural network approach for prediction of long-term strength properties of steel fiber reinforced concrete containing fly ash", J. Zhejiang Univ. Sci. A, 9(11), 1514-1523. https://doi.org/10.1631/jzus.A0720136.
- Kashani, M.M. (2017), "Size effect on inelastic buckling behavior of accelerated pitted corroded bars in porous media", J. Mater. Civil Eng., 29(7), 04017022. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001853.
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (n.d.), "ImageNet classification with deep convolutional neural networks", Adv. Neural Inform. Proc. Syst..
- Kulash, D., Director, E., Tabb, J.R., Agnew, W.G., Ray Chamberlain, A., Crawford, J.A. and Yarbrough, R.L. (1989), "Concrete and Structures".
- Lin, H., Zhao, Y., Feng, P., Ye, H., Ozbolt, J., Jiang, C. and Yang, J.Q. (2019), "State-of-the-art review on the bond properties of corroded reinforcing steel bar", Constr. Build. Mater., 213, 216-233. https://doi.org/10.1016/j.conbuildmat.2019.04.077.
- Liu, G., Bao, H. and Han, B. (2018), "A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis", Math. Prob. Eng., 2018, 5105709. https://doi.org/10.1155/2018/5105709.
- Narloch, P., Hassanat, A., Tarawneh, A.S., Anysz, H., Kotowski, J. and Almohammadi, K. (2019), "Predicting compressive strength of cement-stabilized rammed earth based on SEM images using computer vision and deep learnin", Appl. Sci., 9(23), 5131. https://doi.org/10.3390/app9235131.
- Nguyen, K.T., Nguyen, Q.D., Le, T.A., Shin, J. and Lee, K. (2020), "Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches", Constr. Build. Mater., 247, 118581. https://doi.org/10.1016/j.conbuildmat.2020.118581.
- Nikoo, M., Sadowski, L. and Nikoo, M. (2017), "Prediction of the corrosion current density in reinforced concrete using a self-organizing feature map", Coat., 7(10), "https://doi.org/10.3390/coatings7100160.
- Olubanwo, A.O. and Karadelis, J.N. (2015), "Applied mixture optimization techniques for paste design of bonded roller-compacted fibre reinforced polymer modified concrete (BRCFRPMC) overlays", Mater. Struct. Mater. Constr., 48(7), 2023-2042. https://doi.org/10.1617/s11527-014-0291-x.
- Rinchon, J.P.M., Concha, N.C. and Calilung, M.G.V. (2017), "Reinforced concrete ultimate bond strength model using hybrid neural network-genetic algorithm", HNICEM 2017-9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management. https://doi.org/10.1109/HNICEM.2017.8269560.
- Saifullah, M. and Clark, L.A. (1994), "Effect of corrosion rate on the bond strength of corroded reinforcement", Corros. Corros. Protect. Steel Concrete, 1, 591-602.
- Shima, H. (2001), "Local bond stress-slip relationship of corroded steel bars embedded in concrete", Third International Conference on Concrete Under Sever Conditions.
- Shin, H.K., Ahn, Y.H., Lee, S. and Kim, H.Y. (2019), "Digital vision based concrete compressive strength evaluating model using deep convolutional neural network", Comput. Mater. Contin., 61(2), 911-928. https://doi.org/10.32604/cmc.2019.08269.
- Shirkhani, A., Davarnia, D. and Farahmand Azar, B. (2019), "Prediction of bond strength between concrete and rebar under corrosion using ANN", Comput. Concrete, 23(4), 273-279. https://doi.org/doi.org/10.12989/cac.2019.23.4.273.
- Song, H.W. and Saraswathy, V. (2007), "Corrosion monitoring of reinforced concrete structures-A review", Int. J. Electrochem. Sci., 2(1), 1-28.
- Stewart, M.G. (2009), "Mechanical behaviour of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams", Struct. Saf., 31(1), 19-30. https://doi.org/10.1016/j.strusafe.2007.12.001.
- Tang, J., Yan, D. and Zhao, L.J. (2014), "Comparison of several extreme learning machine algorithm for modeling concrete compressive strength", Appl. Mech. Mater., 2014, 1735-1738. https://doi.org/10.4028/www.scientific.net/AMM.548-549.1735.
- Tanyildizi, H. (2018a), "Long-term microstructure and mechanical properties of polymer-phosphazene concrete exposed to freeze-thaw", Constr. Build. Mater., 187, 1121-1129. https://doi.org/10.1016/j.conbuildmat.2018.08.068.
- Tanyildizi, H. (2018b), "Long-term performance of the healed mortar with polymer containing phosphazene after exposed to sulfate attack", Constr. Build. Mater., 167, 473-481. https://doi.org/10.1016/j.conbuildmat.2018.02.054.
- Tanyildizi, H. (2021), "Predicting the geopolymerization process of fly ash-based geopolymer using deep long short-term memory and machine learning", Cement Concrete Compos., 123, 104177. https://doi.org/10.1016/j.cemconcomp.2021.104177.
- Tanyildizi, H., Coskun, A. and Somunkiran, I. (2008), "An experimental investigation of bond and compressive strength of concrete with mineral admixtures at high temperatures", Arab. J. Sci. Eng., 33(2B), 443-449.
- Uysal, M., Akyuncu, V., Tanyildizi, H., Sumer, M. and Yildirim, H. (2019), "Optimization of durability properties of concrete containing fly ash using Taguchi's approach and Anova analysis", Revista de La Construccio https://doi.org/10.7764/RDLC.17.3.364.
- Wallbank, E.J. (1989), The Performance of Concrete in Bridges a Survey of 200 Highway Bridges, Performance of Concrete in Bridges a Survey of 200 Highway Bridges.
- Wang, B., Li, Q., Liu, F., Wang, J. and Xu, S. (2018), "Shear bond assessment of UHTCC repair using push-out test", Constr. Build. Mater., 164, 206-216. https://doi.org/10.1016/j.conbuildmat.2017.12.148.
- Wroblewski, L., Hristozov, D. and Sadeghian, P. (2016), "Durability of bond between concrete beams and FRP composites made of flax and glass fibers", Constr. Build. Mater., 126, 800-811. https://doi.org/10.1016/j.conbuildmat.2016.09.095.
- Yalciner, H., Eren, O. and Sensoy, S. (2012), "An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level", Cement Concrete Res., 42(5), 643-655. https://doi.org/10.1016/j.cemconres.2012.01.003.
- Yartsev, V.P., Nikolyukin, A.N. and Korneeva, A.O. (2019), "Neural network modeling of concrete bond strength to reinforcement", IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/687/3/033011.
- Yaseen, Z.M., Deo, R.C., Hilal, A., Abd, A.M., Bueno, L.C., Salcedo-Sanz, S. and Nehdi, M.L. (2018), "Predicting compressive strength of lightweight foamed concrete using extreme learning machine model", Adv. Eng. Softw., 115, 112-125. https://doi.org/10.1016/j.advengsoft.2017.09.004.
- Zhao, Y.X. and Jin, W.L. (2002), "Test study on bond behavior of corroded steel bars and concrete", J. Zhejiang Univ., 36(4), 352-356. https://doi.org/10.3785/j.issn.1008-973X.2002.04.002