References
- Al-qaness, M.A., Abd Elaziz, M., Ewees, A.A. and Cui, X. (2019), "A modified adaptive neuro-fuzzy inference system using multiverse optimizer algorithm for oil consumption forecasting", Electronics, 8(10), 1071. https://doi.org/10.3390/electronics8101071
- Azan, D. and Haddad, A. (2019), "Simple equations for considering spatial variability on the bearing capacity of clay", Civil Eng. J., 5(1), 93-106. https://doi.org/10.28991/cej-2019-03091228
- Breiman, L. (1996), "Bagging predictors", Mach. Learn., 24(2), 123-140. https://doi.org/10.1007/BF00058655
- Bui, D.T., Moayedi, H., Kalantar, B., Osouli, A., Gor, M., Pradhan, B., Nguyen, H. and Rashid, A.S.A. (2019), "Harris hawks optimization: A novel swarm intelligence technique for spatial assessment of landslide susceptibility", Sensors, 19, 3590. https://doi.org/10.3390/s19163590
- Burse, K., Manoria, M. and Kirar, V.P.S. (2011), "Improved back propagation algorithm to avoid local minima in multiplicative neuron model", Proceedings of International Conference on Advances in Information Technology and Mobile Communication, pp. 67-73. ttps://doi.org/10.1007/978-3-642-20573-6_11
- Celik, E. and Gor, H. (2019), "Enhanced speed control of a DC servo system using PI+ DF controller tuned by stochastic fractal search technique", J. Franklin Inst., 356(3), 1333-1359. https://doi.org/10.1016/j.jfranklin.2018.11.020
- Celik, E., Gor, H., Ozturk, N. and Kurt, E. (2017), "Application of artificial neural network to estimate power generation and efficiency of a new axial flux permanent magnet synchronous generator", Int. J. Hydrogen Energy, 42(28), 17692-17699. https://doi.org/10.1016/j.ijhydene.2017.01.168
- Chen, L.Y., Liu, X., Wang, S.L. and Qin, C.Y. (2010), "Overexpression of the Endocan gene in endothelial cells from hepatocellular carcinoma is associated with angiogenesis and tumour invasion", J. Int. Med. Res., 38(2), 498-510. https://doi.org/10.1177/147323001003800213
- Das, M. and Dey, A.K. (2018), "Prediction of bearing capacity of stone columns placed in soft clay using ANN model", Geotech. Geol. Eng., 36(3), 1845-1861. https://doi.org/10.1007/s10706-017-0436-0
- Dede, T., Kankal, M., Vosoughi, A.R., Grzywinski, M. and Kripka, M. (2019), "Artificial intelligence applications in civil engineering", Adv. Civil Eng., 2019. https://doi.org/10.1155/2019/8384523
- Deeb, H., Sarangi, A., Mishra, D. and Sarangi, S.K. (2020), "Improved Black Hole optimization algorithm for data clustering", J. King Saud Univ.-Comput. Info. Sci. https://doi.org/10.1016/j.jksuci.2020.12.013
- Faris, H., Aljarah, I. and Mirjalili, S. (2016), "Training feedforward neural networks using multi-verse optimizer for binary classification problems", Appl. Intell., 45(2), 322-332. https://doi.org/10.1007/s10489-016-0767-1
- Faris, H., Hassonah, M.A., Al-Zoubi, A.M., Mirjalili, S. and Aljarah, I. (2018), "A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture", Neural Comput. Applicat., 30(8), 2355-2369. https://doi.org/10.1007/s00521-016-2818-2
- Fathizadeh, S.F., Vosoughi, A.R. and Banan, M.R. (2021), "Considering soil-structure interaction effects on performance-based design optimization of moment-resisting steel frames by an engineered cluster-based genetic algorithm", Eng. Optimiz., 53(3), 440-460. https://doi.org/10.1080/0305215X.2020.1739278
- Feng, Y., Zhang, B., Liu, Y., Niu, Z., Dai, B., Fan, Y. and Chen, X. (2021), "A 200-225-GHz manifold-coupled multiplexer utilizing metal waveguides", IEEE Transact. Microw. Theory Techniques, 69(2), 5327-5333. https://doi.org/10.1109/TMTT.2021.3119316
- Gharehpasha, S., Masdari, M. and Jafarian, A. (2021), "Virtual machine placement in cloud data centers using a hybrid multiverse optimization algorithm", Artif. Intell. Rev., 54(3), 2221-2257. https://doi.org/10.1007/s10462-020-09903-9
- Hans, R. and Kaur, H. (2020), "Binary Multi-Verse Optimization (BMVO) Approaches for Feature Selection", Int. J. Interact. Multimedia Artif. Intell., 6(1). https://doi.org/10.9781/ijimai.2019.07.004
- Hansen, J.B. (1970), A revised and extended formula for bearing capacity.
- Harandizadeh, H., Jahed Armaghani, D. and Khari, M. (2019), "A new development of ANFIS-GMDH optimized by PSO to predict pile bearing capacity based on experimental datasets", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-019-00849-3
- Hatamlou, A. (2013), "Black hole: A new heuristic optimization approach for data clustering", Info. Sci., 222, 175-184. https://doi.org/10.1016/j.ins.2012.08.023
- Hecht-Nielsen, R. (1992), Neural Networks for Perception, Elsevier, pp. 65-93. https://doi.org/10.1016/B978-0-12-741252-8.50010-8
- Heidari, A.A. and Abbaspour, R.A. (2014), "A gravitational black hole algorithm for autonomous UCAV mission planning in 3D realistic environments", Int. J. Comput. Applicat., 95(9).
- Hornik, K. (1991), "Approximation capabilities of multilayer feedforward networks", Neural Networks, 4(2), 251-257. https://doi.org/10.1016/0893-6080(91)90009-T
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- Jabbar, S.F., Hamed, R.I. and Alwan, A.H. (2018), "The potential of nonparametric model in foundation bearing capacity prediction", Neural Comput. Applicat., 30(10), 3235-3241. https://doi.org/10.1007/s00521-017-2916-9
- Jamali, A. (2021), "Improving land use land cover mapping of a neural network with three optimizers of multi-verse optimizer, genetic algorithm, and derivative-free function", Egypt. J. Remote Sensing Space Sci., 24(3), 373-390. https://doi.org/10.1016/j.ejrs.2020.07.001
- Khalili, A. and Vosoughi, A.R. (2018), "An approach for the Pasternak elastic foundation parameters estimation of beams using simulated frequencies", Inverse Probl. Sci. Eng., 26(8), 1079-1093. https://doi.org/10.1080/17415977.2017.1377707
- Kalinli, A., Acar, M.C. and Gunduz, Z. (2011), "New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization", Eng. Geol., 117(1-2), 29-38. https://doi.org/10.1016/j.enggeo.2010.10.002
- Khare, A., Gupta, R. and Shukla, P.K. (2022), IoT and Analytics for Sensor Networks, Springer, pp. 333-343. https://doi.org/10.1007/978-981-16-2919-8_3
- Kuo, Y.L., Jaksa, M.B., Lyamin, A.V. and Kaggwa, W.S. (2009), "ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil", Comput. Geotech., 36(3), 503-516. https://doi.org/10.1016/j.compgeo.2008.07.002
- Kurt, E. and Gor, H. (2014), "Electromagnetic design of a new axial flux generator", Proceedings of the 2014 6th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp. 39-42. https://doi.org/10.1109/ECAI.2014.7090195
- Li, X., Yang, H., Zhang, J., Qian, G., Yu, H. and Cai, J. (2021), "Time-domain analysis of tamper displacement during dynamic compaction based on automatic control", Coatings, 11(9), 1092. https://doi.org/10.3390/coatings11091092
- Liang, S., Foong, L.K. and Lyu, Z. (2020), "Determination of the friction capacity of driven piles using three sophisticated search schemes", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01118-4
- Liu, W., Moayedi, H., Nguyen, H., Lyu, Z. and Bui, D.T. (2019), "Proposing two new metaheuristic algorithms of ALO-MLP and SHO-MLP in predicting bearing capacity of circular footing located on horizontal multilayer soil", Eng. Comput., 1-11. https://doi.org/10.1007/s00366-019-00897-9
- Lu, N., Wang, H., Wang, K. and Liu, Y. (2021), "Maximum Probabilistic and Dynamic Traffic Load Effects on Short-to-Medium Span Bridges", Comput. Model. Eng. Sci., 127(1), 345-360. https://doi.org/10.32604/cmes.2021.013792
- Luo, Y., Zheng, H., Zhang, H. and Liu, Y. (2021), "Fatigue reliability evaluation of aging prestressed concrete bridge accounting for stochastic traffic loading and resistance degradation", Adv. Struct. Eng., 24(13), 3021-3029. https://doi.org/10.1177/13694332211017995
- Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges", Commun. Nonlinear Sci. Numer. Simul., 14(3), 906-915. https://doi.org/10.1016/j.cnsns.2007.10.014
- Meyerhof, G.G. (1963), "Some recent research on the bearing capacity of foundations", Can. Geotech. J., 1(1), 16-26. https://doi.org/10.1139/t63-003
- Mirjalili, S., Mirjalili, S.M. and Hatamlou, A. (2016), "Multi-verse optimizer: a nature-inspired algorithm for global optimization", Neural Comput. Applicat., 27(2), 495-513. https://doi.org/10.1007/s00521-015-1870-7
- Moayedi, H. and Mosavi, A. (2021), "A water cycle-based error minimization technique in predicting the bearing capacity of shallow foundation", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-021-01289-8
- Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2018), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-018-0644-0
- Moayedi, H., Bui, D.T. and Thi Ngo, P.T. (2019a), "Neural computing improvement using four metaheuristic optimizers in bearing capacity analysis of footings settled on two-layer soils", Appl. Sci., 9(23), 5264. https://doi.org/10.3390/app9235264
- Moayedi, H., Mehrabi, M., Kalantar, B., Abdullahi Mu'azu, M., A. Rashid, A.S., Foong, L.K. and Nguyen, H. (2019b), "Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide", Geomat. Natural Hazards Risk, 10(1), 1879-1911. https://doi.org/10.1080/19475705.2019.1650126
- Moayedi, H., Gor, M., Khari, M., Foong, L.K., Bahiraei, M. and Bui, D.T. (2020), "Hybridizing four wise neural-metaheuristic paradigms in predicting soil shear strength", Measurement, 107576. https://doi.org/10.1016/j.measurement.2020.107576
- Moayedi, H., Abdullahi, M.A.M., Nguyen, H. and Rashid, A.S.A. (2021), "Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils", Eng. Comput., 37(1), 437-447. https://doi.org/10.1007/s00366-019-00834-w
- More, J.J. (1978), Numerical Analysis, Springer, pp. 105-116. https://doi.org/10.1007/BFb0067700
- Munoz, R., Olivares, R., Taramasco, C., Villarroel, R., Soto, R., Barcelos, T.S., Merino, E. and Alonso-Sanchez, M.F. (2018), "Using black hole algorithm to improve eeg-based emotion recognition", Computat. Intell. Neurosci., 2018. https://doi.org/10.1155/2018/3050214
- Onat, O. and Gul, M. (2018), "Application of artificial neural networks to the prediction of out-of-plane response of infill walls subjected to shake table", Smart Struct. Syst., Int. J., 21(4), 521-535. https://doi.org/10.12989/sss.2018.21.4.521
- Ornek, M. (2014), "Estimation of ultimate loads of eccentric-inclined loaded strip footings rested on sandy soils", Neural Comput. Applicat., 25(1), 39-54. https://doi.org/10.1007/s00521-013-1444-5
- Padmini, D., Ilamparuthi, K. and Sudheer, K.P. (2008), "Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models", Comput. Geotech., 35(1), 33-46. https://doi.org/10.1016/j.compgeo.2007.03.001
- Pashaei, E. and Pashaei, E. (2021), "Training feedforward neural network using enhanced black hole algorithm: a case study on COVID-19 related ACE2 gene expression classification", Arab. J. Sci. Eng., 46(4), 3807-3828. https://doi.org/10.1007/s13369-020-05217-8
- Pohjankukka, J., Riihimaki, H., Nevalainen, P., Pahikkala, T., AlaIlomaki, J., Hyvonen, E., Varjo, J. and Heikkonen, J. (2016), "Predictability of boreal forest soil bearing capacity by machine learning", J. Terramech., 68, 1-8. https://doi.org/10.1016/j.jterra.2016.09.001
- Sadrossadat, E., Ghorbani, B., Oskooei, R. and Kaboutari, M. (2018), "Use of adaptive neuro-fuzzy inference system and gene expression programming methods for estimation of the bearing capacity of rock foundations", Eng. Computat. https://doi.org/10.1108/EC-07-2017-0258
- Salih, S.Q. (2019), "A new training method based on black hole algorithm for convolutional neural network", J. Southwest Jiaotong Univ., 54(3). https://doi.org/10.35741/issn.0258-2724.54.3.22
- Seyedashraf, O., Mehrabi, M. and Akhtari, A.A. (2018), "Novel approach for dam break flow modeling using computational intelligence", J. Hydrol., 559, 1028-1038. https://doi.org/10.1016/j.jhydrol.2018.03.001
- Shahnazari, H. and Tutunchian, M.A. (2012), "Prediction of ultimate bearing capacity of shallow foundations on cohesionless soils: An evolutionary approach", KSCE J. Civil Eng., 16(6), 950-957. https://doi.org/10.1007/s12205-012-1651-0
- Soleimanbeigi, A. and Hataf, N. (2005), "Predicting ultimate bearing capacity of shallow foundations on reinforced cohesionless soils using artificial neural networks", Geosynth. Int., 12(6), 321-332. https://doi.org/10.1680/gein.2005.12.6.321
- Sultana, P. and Dey, A.K. (2019), "Estimation of ultimate bearing capacity of footings on soft clay from plate load test data considering variability", Indian Geotech. J., 49(2), 170-183. https://doi.org/10.1007/s40098-018-0311-9
- Sun, L., Li, C., Zhang, C., Su, Z. and Chen, C. (2018), "Early monitoring of rebar corrosion evolution based on FBG sensor", Int. J. Struct. Stabil. Dyn., 18(08), 1840001. https://doi.org/10.1142/S0219455418400011
- Sundaram, A. (2020), "Multiobjective multi-verse optimization algorithm to solve combined economic, heat and power emission dispatch problems", Appl. Soft Comput., 91, 106195. https://doi.org/10.1016/j.asoc.2020.106195
- Swets, J.A. (1988), "Measuring the accuracy of diagnostic systems", Science, 240(4857), 1285-1293. https://doi.org/10.1126/science.3287615
- Terzaghi, K. (1943), "Earth pressure and shearing resistance of plastic clay: a symposium: liner-plate tunnels on the Chicago (IL) subway", Transact. Am. Soc. Civil Engs., 108(1), 970-1007. https://doi.org/10.1061/TACEAT.0005664
- Tsai, H.C., Tyan, Y.Y., Wu, Y.W. and Lin, Y.H. (2013), "Determining ultimate bearing capacity of shallow foundations using a genetic programming system", Neural Comput. Applicat., 23(7-8), 2073-2084. https://doi.org/10.1007/s00521-012-1150-8
- Vosoughi, A.R. (2016), "Nonlinear free vibration of functionally graded nanobeams on nonlinear elastic foundation", Iran. J. Sci. Technol. Transact. Civil Eng., 40(1), 23-32. https://doi.org/10.1007/s40996-016-0012-5
- Vosoughi, A.R. and Darabi, A. (2016), "A hybrid inverse method for small scale parameter estimation of FG nanobeams", Steel Compos. Struct., Int. J., 20(5), 1119-1131. https://doi.org/10.12989/scs.2016.20.5.1119
- Vosoughi, A.R. and Darabi, A. (2017), "A new hybrid CG-GAs approach for high sensitive optimization problems: with application for parameters estimation of FG nanobeams", Appl. Soft Comput., 52, 220-230. https://doi.org/10.1016/j.asoc.2016.12.016
- Vosoughi, A.R., Banan, M.R., Banan, M.R. and Malekzadeh, P. (2014), "Hybrid FE-IDQ-CG method for dynamic parameters estimation of multilayered half-space", Compos. Part B: Eng., 56, 74-82. https://doi.org/10.1016/j.compositesb.2013.08.001
- Vosoughi, A.R., Malekzadeh, P., Topal, U. and Dede, T. (2018), "A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates", Steel Compos. Struct., Int. J., 28(4), 509-516. https://doi.org/10.12989/scs.2018.28.4.509
- Wang, L., Jin, X., Xu, W. and Xu, G. (2021), "A black hole particle swarm optimization method for the source parameters inversion: application to the 2015 Calbuco eruption, Chile", J. Geodyn., 146, 101849. https://doi.org/10.1016/j.jog.2021.101849
- Xu, J., Lan, W., Ren, C., Zhou, X., Wang, S. and Yuan, J. (2021), "Modeling of coupled transfer of water, heat and solute in saline loess considering sodium sulfate crystallization", Cold Regions Sci. Technol., 189, 103335. https://doi.org/10.1016/j.coldregions.2021.103335