References
- Adamowski, J.F. (2008), "Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross wavelet analysis", J. Hydrol., 353(3-4), 247-266. https://doi.org/10.1016/j.jhydrol.2008.02.013
- Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Expert Syst. Applicat., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156
- Azimi-Pour, M., Eskandari-Naddaf, H. and Pakzad, A. (2020), "Linear and non-linear SVM prediction for fresh properties and compressive strength of high-volume fly ash self-compacting concrete", Constr. Build. Mater., 230, p. 117021. https://doi.org/10.1016/j.conbuildmat.2019.117021
- Babu, K.G. and Rao, G.S.N. (1994), "Early strength behavior of fly ash concretes", Cement Concrete Res., 24(2), 277-284. https://doi.org/10.1016/0008-8846(94)90053-1
- Behnood, A., Behnood, V., Gharehveran, M.M. and Alyamac, K.E. (2017), "Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm", Constr. Build. Mater., 142, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.03.061
- Benemaran, R.S. and Esmaeili-Falak, M. (2020), "Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO", Comput. Concrete, Int. J., 26(4), 309-316. https://doi.org/10.12989/cac.2020.26.4.309
- Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A. (2013), "Global strategies and potentials to curb CO2 emissions in cement industry", J. Cleaner Prod., 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049
- Cabrera, J.G. and Claisse, P.A. (1990), "Measurement of chloride penetration into silica fume concrete", Cement Concrete Compos., 12(3), 157-161. https://doi.org/10.1016/0958-9465(90)90016-Q
- Chou, J.H. and Ghaboussi, J. (2001), "Genetic algorithm in structural damage detection", Comput. Struct., 79(14), 1335-1353. https://doi.org/10.1016/S0045-7949(01)00027-X
- Chou, J.S. and Pham, A.D. (2013), "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength", Constr. Build. Mater., 49, 554-563. https://doi.org/10.1016/j.conbuildmat.2013.08.078
- Craven, P. and Wahba, G. (1978), "Smoothing noisy data with spline functions", Numerische mathematik, 31(4), 377-403. https://doi.org/10.1007/BF01404567
- Detwiler, R.J., Bhatty, J.I. and Battacharja, S. (1996), Supplementary cementing materials for use in blended cements, No. R&D Bulletin RD112T. http://worldcat.org/isbn/0893121428
- Dutta S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, Int. J., 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463
- Esmaeili-Falak, M. (2017), "Effect of system's geometry on the stability of frozen wall in excavation of saturated granular soils", Doctoral Dissertation; University of Tabriz, Tabriz, Iran.
- Esmaeili-Falak, M., Katebi, H., Javadi, A. and Rahimi, S. (2017), "Experimental investigation of stress and strain characteristics of frozen sandy soils-A case study of Tabriz subway", Modares Civil Eng. J., 17(5), 13-23. http://mcej.modares.ac.ir/article-16-7658-en.html
- Esmaeili-Falak, M., Katebi, H. and Javadi, A. (2018), "Experimental study of the mechanical behavior of frozen soils-A case study of tabriz subway", Periodica Polytech. Civil Eng., 62(1), 117-125. https://doi.org/10.3311/PPci.10960
- Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Regions Eng., 33(3), 04019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188
- Esmaeili-Falak, M., Sarkhani Benemaran, R. and Seifi, R. (2020a), "Improvement of the mechanical and durability parameters of construction concrete of the Qotursuyi Spa", Concrete Res. Quarterly J., 13(2), 81-90. https://doi.org/10.22124/JCR.2020.14518.1395
- Esmaeili-Falak, M., Katebi, H. and Javadi, A.A. (2020b), "Effect of freezing on stress-strain characteristics of granular and cohesive soils", J. Cold Regions Eng., 34(2), 05020001. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000205
- Felekoglu, B., Turkel, S. and Baradan, B. (2007), "Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete", Build. Environ., 42(4), 1795-1802. https://doi.org/10.1016/j.buildenv.2006.01.012
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", Annals Statist., 19(1), 1-67. https://www.jstor.org/stable/2241837 https://doi.org/10.1214/aos/1176347963
- Guo, W.A., Li, W.Z., Zhang, Q., Wang, L., Wu, Q.D. and Ren, H.L. (2014), "Biogeography-based particle swarm optimization with fuzzy elitism and its applications to constrained engineering problems", Eng. Optimiz., 46(11), 1465-1484. https://doi.org/10.1080/0305215X.2013.854349
- Hubertova, M. and Hela, R. (2007), "The effect of metakaolin and silica fume on the properties of lightweight self-consolidating concrete", Special Publication, 243, 35-48.
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95-International Conference on Neural Networks, Volume 4, pp. 1942-1948. https://doi.org/10.1109/ICNN.1995.488968
- Kjellsen, K.O., Wallevik, O.H. and Hallgren, M. (1999), "On the compressive strength development of high-performance concrete and paste-effect of silica fume", Mater. Struct., 32(1), 63. https://doi.org/10.1007/BF02480414
- Khademi, F., Akbari, M., Jamal, S.M. and Nikoo, M. (2017), "Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete", Front. Struct. Civil Eng., 11(1), 90-99. https://doi.org/10.1007/s11709-016-0363-9
- Lam, L., Wong, Y.L. and Poon, C.S. (1998), "Effect of fly ash and silica fume on compressive and fracture behaviors of concrete", Cement Concrete Res., 28(2), 271-283. https://doi.org/10.1016/S0008-8846(97)00269-X
- Moayedi, H., Kalantar, B., Foong, L.K., Tien Bui, D. and Motevalli, A. (2019), "Application of three metaheuristic techniques in simulation of concrete slump", Appl. Sci., 9(20), 4340. https://doi.org/10.3390/app9204340
- Mohamed, O.A. and Najm, O.F. (2016), "Splitting tensile strength of self-consolidating concrete containing slag", Proceedings of AES-ATEMA International Conference, Advances and Trends in Engineering Materials and their Applications, pp. 109-114. https://doi.org/10.1016/j.proeng.2016.04.157
- Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng Software, 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014
- Nochaiya, T., Wongkeo, W. and Chaipanich, A. (2010), "Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete", Fuel, 89(3), 768-774. https://doi.org/10.1016/j.fuel.2009.10.003
- Oreta, A.W. and Ongpeng, J. (2011), "Modeling the confined compressive strength of hybrid circular concrete columns using neural networks", Comput. Concrete, Int. J., 8(5), 597-616. https://doi.org/10.12989/cac.2011.8.5.597
- Pala, M., Ozbay, E., Oztas, A. and Yuce, M.I. (2007), "Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks", Constr. Build. Mater, 21(2), 384-394. https://doi.org/10.1016/j.conbuildmat.2005.08.009
- Poorjafar, A., Esmaeili-Falak, M. and Katebi, H. (2021), "Pile-soil interaction determined by laterally loaded fixed head pile group", Geomech. Eng., Int. J., 26(1), 13-25. https://doi.org/10.12989/gae.2021.26.1.013
- Sarkhani Benemaran, R. (2017), "Experimental and analytical study of pile-stabilized layered slopes", Thesis; University of Tabriz, Tabriz, Iran.
- Sarkhani Benemaran, R., Esmaeili-Falak, M. and Katebi, H. (2020), "Physical and numerical modelling of pile-stabilised saturated layered slopes", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, pp. 1-16. https://doi.org/10.1680/jgeen.20.00152
- Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M.N., Nguyen, H., Dou, J., Song, X. and Poi-Ngian, S. (2019), "Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete", Appl. Sci., 9(24), 5534. https://doi.org/10.3390/app9245534
- Siddique, R. (2004), "Performance characteristics of high-volume Class F fly ash concrete", Cement Concrete Res., 34(3), 487-493. https://doi.org/10.1016/j.cemconres.2003.09.002
- Simon, D. (2008), "Biogeography-based optimization", IEEE Transact. Evolut. Computat., 12, 702-713. https://doi.org/10.1109/TEVC.2008.919004
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Computat. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- Toutanji, H., Delatte, N., Aggoun, S., Duval, R. and Danson, A. (2004), "Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete", Cement Concrete Res., 34(2), 311-319. https://doi.org/10.1016/j.cemconres.2003.08.017
- Turk, K., Turgut, P., Karatas, M. and Benli, A. (2010), "Mechanical properties of self-compacting concrete with silica fume/fly ash", Proceedings of the 9th International Congress on Advances in Civil Engineering, pp. 27-30.
- Wang, C.C., Chen, T.T., Wang, H.Y. and Huang, C. (2014), "A predictive model for compressive strength of waste LCD glass concrete by nonlinear-multivariate regression", Comput. Concrete, Int. J., 13(4), 531-545. http://dx.doi.org/10.12989/cac.2014.13.4.531
- Yaprak, H., Karaci, A. and Demir, I. (2013), "Prediction of the effect of varying cure conditions and w/c ratio on the compressive strength of concrete using artificial neural networks", Neural Comput. Applicat., 22(1), 133-141. https://doi.org/10.1007/s00521-011-0671-x
- Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Zelic, J., Rusic, D. and Krstulovic, R. (2004), "A mathematical model for prediction of compressive strength in cement-silica fume blends", Cement Concrete Res., 34(12), 2319-2328. https://doi.org/10.1016/j.cemconres.2004.04.015