DOI QR코드

DOI QR Code

Crack detection in concrete slabs by graph-based anomalies calculation

  • Sun, Weifang (College of Mechanical and Electrical Engineering, Wenzhou University) ;
  • Zhou, Yuqing (College of Mechanical and Electrical Engineering, Wenzhou University) ;
  • Xiang, Jiawei (College of Mechanical and Electrical Engineering, Wenzhou University) ;
  • Chen, Binqiang (School of Aerospace Engineering, Xiamen University) ;
  • Feng, Wei (College of Mechanical and Electrical Engineering, Henan University of Technology)
  • 투고 : 2020.11.12
  • 심사 : 2021.12.17
  • 발행 : 2022.03.25

초록

Concrete slab cracks monitoring of modern high-speed railway is important for safety and reliability of train operation, to prevent catastrophic failure, and to reduce maintenance costs. This paper proposes a curvature filtering improved crack detection method in concrete slabs of high-speed railway via graph-based anomalies calculation. Firstly, large curvature information contained in the images is extracted for the crack identification based on an improved curvature filtering method. Secondly, a graph-based model is developed for the image sub-blocks anomalies calculation where the baseline of the sub-blocks is acquired by crack-free samples. Once the anomaly is large than the acquired baseline, the sub-block is considered as crack-contained block. The experimental results indicate that the proposed method performs better than convolutional neural network method even under different curvature structures and illumination conditions. This work therefore provides a useful tool for concrete slabs crack detection and is broadly applicable to variety of infrastructure systems.

키워드

과제정보

The research described in this paper was financially supported by the Zhejiang Provincial Natural Science Foundation of China (Nos. LQ21E050003 and LQ20E050027), the Zhejiang Special Support Program for High-level Personnel Recruitment of China (No. 2018R52034), the National Natural Science Foundation of China (No. U1909217), and the Fundamental Scientific Research Project of Wenzhou (No. G20190013).

참고문헌

  1. Ahmadlou, M. and Adeli, H. (2012), "Visibility graph similarity: A new measure of generalized synchronization in coupled dynamic systems", Physica D: Nonlinear Phenom., 241(4), 326-332. https://doi.org/0.1016/j.physd.2011.09.008 https://doi.org/10.1016/j.physd.2011.09.008
  2. Ahmadlou, M. and Adeli, H. (2017), "Complexity of weighted graph: A new technique to investigate structural complexity of brain activities with applications to aging and autism", Neurosci. Lett., 650, 103-108. https://doi.org/10.1016/j.neulet.2017.04.009
  3. Ai, C., Qiu, S., Zhang, A. and Wang, K.C.P. (2018), "A nonballasted rail track slab crack identification method using a level-set-based active contour model", Comput.-Aid. Civil Infrastr. Eng., 33, 571-584. https://doi.org/10.1111/mice.12362
  4. Bang, S., Park, S., Kim, H. and Kim, H. (2019), "Encoder-decoder network for pixel-level road crack detection in black-box images", Comput.-Aid. Civil Infrastr. Eng., 34, 713-727. https://doi.org/10.1111/mice.12440
  5. Bayar, G. and Bilir, T. (2019), "A novel study for the estimation of crack propagation in concrete using machine learning algorithms", Constr. Build. Mater., 215, 670-685. https://doi.org/10.1016/j.conbuildmat.2019.04.227
  6. Bilge, H., Doruk, E., Findik, F. and Pakdil, M. (2019), "Effect of fatigue crack propagation on natural frequencies of system in AISI 4140 Steel", Steel Compos. Struct., Int. J., 32(3), 305-312. https://doi.org/10.12989/scs.2019.32.3.305
  7. Cha, Y., Choi, W., Suh, G. and Mahmoudkhani, S. (2018), "Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Comput.- Aid. Civil Infrastr. Eng., 33(9), 731-747. https://doi.org/10.1111/mice.12334
  8. Colla, C., Krause, M., Maierhofer, C., HoEhberger, H.-J. and Sommer, H. (2002), "Combination of NDT techniques for site investigation of non-ballasted railway tracks", NDT E Int., 35, 95-105. https://doi.org/10.1016/S0963-8695(01)00033-0
  9. Fan, H., Cosman, P.C., Hou, Y. and Li, B. (2018), "High-speed railway fastener detection based on a line local binary pattern", IEEE Signal Process. Lett., 25(6), 788-792. https://doi.org/10.1109/LSP.2018.2825947
  10. Gong, Y. and Sbalzarini, I.F. (2017), "Curvature Filters Efficiently Reduce Certain Variational Energies", IEEE Transact. Image Process., 26(4), 1786-1798. https://doi.org/10.1109/TIP.2017.2658954
  11. Kang, M.S., An, Y.K. and Kim, D.J. (2018), "Electrical impedance-based crack detection of SFRC under varying environmental conditions", Smart Struct. Syst., Int. J., 22(1), 1-11. https://doi.org/10.12989/sss.2018.22.1.001
  12. Kong, X. and Li, J. (2019), "Non-contact fatigue crack detection in civil infrastructure through image overlapping and crack breathing sensing", Automat. Constr., 99, 125-139. https://doi.org/10.1016/j.autcon.2018.12.011
  13. Leaman, F., Herz, A, Brinnel, V., Baltes, R. and Clausen, E. (2020), "Analysis of acoustic emission signals during fatigue testing of a M36 bolt using the Hilbert-Huang spectrum", Struct. Monitor. Maint., Int. J., 7(1), 13-25. https://doi.org/10.12989/smm.2020.7.1.013
  14. Li, H., Strauss, J. and Lu, L. (2019), "The impact of high-speed rail on civil aviation in China", Transport Policy, 74, 187-200. https://doi.org/10.1016/j.tranpol.2018.11.015
  15. Liu, Z., Cao, Y., Wang, Y. and Wang, W. (2019), "Computer vision-based concrete crack detection using U-net fully convolutional networks", Automat. Constr., 104, 129-139. https://doi.org/10.1016/j.autcon.2019.04.005
  16. Lu, G., Liu, J. and Yan, P. (2018), "Graph-based structural change detection for rotating machinery monitoring", Mech. Syst. Signal Process., 99, 73-82. https://doi.org/10.1016/j.ymssp.2017.06.003
  17. Luo, L., Feng, M.Q., Wu, J. and Leung, R.Y. (2019), "Autonomous pothole detection using deep region-based convolutional neural network with cloud computing", Smart Struct. Syst., Int. J., 24(6), 745-757. https://doi.org/10.12989/sss.2019.24.6.745
  18. Ma, J., Sun, L., Wang, H., Zhang, Y. and Aickelin, U. (2016), "Supervised anomaly detection in uncertain pseudoperiodic data streams", ACM Transact. Internet Technol., 16(1), 1-20. https://doi.org/10.1145/2806890
  19. Maeda, K., Takahashi, S., Ogawa, T. and Haseyama, M. (2019), "Convolutional sparse coding-based deep random vector functional link network for distress classification of road structures", Comput.-Aid. Civil Infrastr. Eng., 34, 654-676. https://doi.org/10.1111/mice.12451
  20. Mirzaei, G. and Adeli, H. (2016), "Resting state functional magnetic resonance imaging processing techniques in stroke studies", Rev. Neurosci., 27(8), 871-885. https://doi.org/10.1515/revneuro-2016-0052
  21. Nayyeri, F., Hou, L., Zhou, J. and Guan, H. (2019), "Foreground-background separation technique for crack detection", Comput.- Aid. Civil Infrastr. Eng., 34, 457-470. https://doi.org/10.1111/mice.12428
  22. Ou, X. Yan, P., Zhang Y., Tu, B., Zhang G., Wu, J. and Li, W. (2019), "Moving object detection method via ResNet-18 with encoder-decoder structure in complex scenes", IEEE Access, 7, 108152-108160. https://doi.org/10.1109/ACCESS.2019.2931922
  23. Ozcan, G., Kocak, Y. and Gulbandilar, E. (2017), "Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models", Comput. Concrete, Int. J., 19(3), 275-282. https://doi.org/10.12989/cac.2017.19.3.275
  24. Sanchez, M., Atique, A., Kim, S., Romero, E. and Zielinski, M. (2013), "Exploring desiccation cracks in soils using a 2D profile laser device", Acta Geotechnica, 8, 583-596. https://doi.org/10.1007/s11440-013-0272-1
  25. Song, S.P. and Ni, Y.J. (2018), "Ultrasound Imaging of Pipeline Crack Based on Composite Transducer Array", Chinese J. Mech. Eng., 31, 1-10. https://doi.org/10.1186/s10033-018-0280-z
  26. Sun, W., Yao, B., Zeng, N., Chen, B., He, Y., Cao, X. and He, W. (2017), "An intelligent gear fault diagnosis methodology using a complex wavelet enhanced convolutional neural network", Materials, 10(7), 1-18. https://doi.org/10.3390/ma10070790
  27. Sun, W., Zhou, Y., Cao, X., Chen, B., Feng, W. and Chen, L. (2020), "A two-stage method for bearing fault detection using graph similarity evaluation", Measurement, 165, 108-138. https://doi.org/10.1016/j.measurement.2020.108138
  28. Wang, C., Zhou, S., Wang, B., Guo, P. and Su, H. (2016), "Settlement behavior and controlling effectiveness of two types of rigid pile structure embankments in high-speed railways", Geomech. Eng., Int. J., 11(6), 847-865. https://doi.org/10.12989/gae.2016.11.6.841
  29. Wang, W., Zhang, A., Wang, K.C.P., Braham, A.F. and Qiu, S. (2018), "Pavement crack width measurement based on Laplace's equation for continuity and unambiguity", Comput.-Aid. Civil Infrastr. Eng., 33, 110-123. https://doi.org/10.1111/mice.12319
  30. Wang, T., Lu, G. and Yan, P. (2020), "A Novel Statistical Time-Frequency Analysis for Rotating Machine Condition Monitoring", IEEE Transact. Indust. Electron., 67(1), 531-541. https://doi.org/10.1109/TIE.2019.2896109
  31. Woo, S. and Yeo, H. (2016), "Optimization of pavement inspection schedule with traffic demand prediction", Procedia - Soc. Behav. Sci., 218, 95-103. https://doi.org/10.1016/j.sbspro.2016.04.013
  32. Xi, P., Ye, X., Jin, T. and Chen, B. (2018), "Structural performance monitoring of an urban footbridge", Struct. Monitor. Maint., Int. J., 5(1), 129-150. https://doi.org/10.12989/smm.2018.5.1.129
  33. Xiang, J., Nackenhorst, U., Wang, Y., Jiang, Y., Gao, H. and He, Y. (2014), "A new method to detect cracks in plate-like structures with though-thickness cracks", Smart Struct. Syst., Int. J., 14(3), 397-418. https://doi.org/10.12989/sss.2014.14.3.397
  34. Ye, X., Jin, T. and Yun, C. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-585. https://doi.org/10.12989/sss.2019.24.5.567
  35. Zhang, A., Wang, K.C.P., Fei, Y., Liu, Y., Chen, C., Yang, G. and Yang, E. (2019), "Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces with a Recurrent Neural Network", Comput.-Aid. Civil Infrastr. Eng., 34, 213-229. https://doi.org/10.1111/mice.12409
  36. Zhuang, L., Wang, L., Zhang, Z. and Tsui, K.L. (2018), "Automated vision inspection of rail surface cracks : A double-layer", Transport. Res. Part C: Emerg. Technol., 92, 258-277. https://doi.org/10.1016/j.trc.2018.05.007