DOI QR코드

DOI QR Code

Dynamic behavior of cracked ceramic reinforced aluminum composite beam

  • Selmi, Abdellatif (Prince Sattam bin Abdulaziz University, College of Engineering, Department of Civil Engineering)
  • 투고 : 2020.01.30
  • 심사 : 2021.12.20
  • 발행 : 2022.03.25

초록

This paper presents the vibration analysis of cracked ceramic-reinforced aluminum composite beams by using a method based on changes in modal strain energy. The crack is considered to be straight. The effective properties of composite materials of the beams are estimated through Mori-Tanaka micromechanical model. Comparison study and numerical simulations with various parameters; ceramic volume fraction, reinforcement aspect ratio, ratio of the reinforcement Young's modulus to the matrix Young's modulus and ratio of the reinforcement density to the matrix density are taken into investigation. Results demonstrate the pronounced effects of these parameters on intact and cracked ceramic aluminum beams.

키워드

참고문헌

  1. Abouelmagd, G. (2004), "Hot deformation and wear resistance of P/M aluminium metal matrix composites", J. Mater. Process. Technol., 155-156, 1395-1401. https://doi.org/10.1016/j.jmatprotec.2004.04.223
  2. Ait Yahia, S., Amar, L.H.H., Belabed Z. and Tounsi, A. (2018), "Effect of homogenization models on stress analysis of functionally graded plates", Struct. Eng. Mech., Int. J., 67(5), 527-544. https://doi.org/10.12989/sem.2018.67.5.527
  3. Anderson, T.L. (2005), Fracture Mechanics: Fundamental and Applications, (3rd Edition), CRC Press, Taylor and Francis Group, London, UK.
  4. Benveniste, Y. (1987), "A new approach to the application of Mori-Tanaka's theory in composite materials", Mech. Mater., 6(2), 147-157. https://doi.org/10.1016/0167-6636(87)90005-6
  5. Chondros, T., Dimarogonas, A. and Yao, J. (1998), "A continuous cracked beam vibration theory", J. Sound Vib., 215(1), 17-34. https://doi.org/10.1006/jsvi.1998.1640
  6. Ding, H.Z., Biermann, H. and Hartmann, O. (2002), "A low cycle fatigue model of a short-fiber reinforced 6061 aluminium alloy metal matrix composite", Compos. Sci. Technol., 62, 2189-2199. https://doi.org/10.1016/S0266-3538(02)00160-4
  7. Ding, H.Z., Biermann, H. and Hartmann, O. (2003), "Low cycle fatigue crack growth and life prediction of short-fibre reinforced aluminum matrix composites", Int. J. Fatigue, 25(3), 209-220. https://doi.org/10.1016/S0142-1123(02)00114-7
  8. Duan, F., Liu, J., Wang, G. and Yu, Z. (2018), "Dynamic behaviour of aluminium alloy plates with surface cracks subjected to repeated impacts", Ships Offshore Struct., 14(5), 478-491. https://doi.org/10.1080/17445302.2018.1507088
  9. Fernando, L. (2010), "Enhanced Young's modulus of Al-Si alloys and reinforced matrices by co-continuous structures", J. Compos. Mater., 44(6), 739-755. https://doi.org/10.1177/0021998309347649
  10. Fu, H.H., Han, K.S. and Song, J.I. (2004), "Wear properties of Saffil/Al, Saffil/Al2O3/Al and Saffil/SiC/Al hybrid metal matrix composites", Wear, 256(7-8), 705-713. https://doi.org/10.1016/S0043-1648(03)00460-5
  11. Gudmundson, P. (1982), "Eigenfrequency changes of structures due to cracks, notches or other geometrical changes", J. Mech. Phys. Solids, 30(5), 339-353. https://doi.org/10.1016/0022-5096(82)90004-7
  12. Han, N.M., Zhang, X.M., Liu, S.D., Ke, B. and Xin, X. (2011), "Effects of pre-stretching and aging on the strength and fracture toughness of aluminium alloy 7050", Mater. Sci. Eng. A, 528(10-11), 3714-3721. https://doi.org/10.1016/j.msea.2011.01.068
  13. Hu, H.T., Li, Y.L. and Wang, J.L. (2013), "Vibration Fatigue Behavior of 2024-T62 Aluminum Alloy Cantilever Beam under Different Vibration State", Key Eng. Mater., 525-526, 253-256. https://doi.org/10.4028/www.scientific.net/KEM.525-526.253
  14. Hu, H.T., Li, Y.L., Suo, T. and Zhao, F. (2015), "Vibration fatigue and fracture performance of aluminum alloy 2024", J. Aeronaut. Mater., 33(4), 78-83. https://doi.org/10.3969/j.issn.1005-5053.2013.4.014
  15. Inegbenebor, A., Bolu, C., Babalola, P., Inegbenebor, A. and Fayomi, O. (2015), "Influence of the grit size of silicon carbide particles on the mechanical and electrical properties of stir casting aluminum matrix composite material", Silicon, 8, 573-578. https://doi.org/10.1007/s12633-015-9305-8
  16. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 36, 807-821. https://doi.org/10.1007/s00366-019-00732-1
  17. Kim, J. and Stubbs, N. (2003), "Crack detection in beam-type structures using frequency data", J. Sound Vib., 259(1), 145-160. https://doi.org/10.1006/jsvi.2002.5132
  18. Kok, M. (2005), "Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites", J. Mater. Process. Technol., 161(3), 381-387. https://doi.org/10.1016/j.jmatprotec.2004.07.068
  19. Mehdi, R., Nader, P. and Naser, E. (2010), "the effect of production parameters on microstructure and wear resistance of powder metallurgy Al-Al2O3 composite", Mater. Des., 32(2), 1031-1038. https://doi.org/10.1016/j.matdes.2010.07.016
  20. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443
  21. Mohammed A.A., Hayat, S., Tounsi, A., Al-Dulaijan, S.U., AlZahrani, M.M., Alfarabi S, and Tounsi, A. (2021), "Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model", Smart Struct. Syst., Int. J., 28(4), 499-513. https://doi.org/10.12989/sss.2021.28.4.499
  22. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials withmisfitting inclusions", Acta Metallurgica, 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  23. Patel, K.M., Pandey, P.M. and Paruchuri, V.R. (2011), "Study on machinabilty of Al2O3 ceramic composite in EDM using response surface methodology", J. Eng. Mater. Technol., 133(2). https://doi.org/10.1115/1.4003100
  24. Pedersen, K.O., Borvik, T. and Hopperstad, O.S. (2011), "Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions", Mater. Des., 32(1), 97-107. https://doi.org/10.1016/j.matdes.2010.06.029
  25. Pradhan, K.K. and Chakraverty, S. (2014), "Effects of different shear deformation theories on free vibration of functionally graded beams", Int. J. Mech. Sci., 82, 149-160. https://doi.org/10.1016/j.ijmecsci.2014.03.014
  26. Rahbar-Ranji, A. and Zarookian, A. (2015), "Ultimate strength of stiffened plates with a transverse crack under uniaxial compression", Ships Offshore Struct., 10(4), 416-425. https://doi.org/10.1080/17445302.2014.942078
  27. Rahimian, M., Parvin, N. and Ehsani N. (2011), "The effect of production parameters on microstructure and wear resistance of powder metallurgy Al-Al2O3 composite", Mater. Des., 32(2), 1031-1038. https://doi.org/10.1016/j.matdes.2010.07.016
  28. Ramnath, B.V., Elanchezhian, C., Jaivignesh, M., Rajesh, S., Parswajinan, C. and Ghias, A.S.A. (2014), "Evaluation of mechanical properties of aluminium alloy-alumina-boron carbide metal matrix composites", Mater. Des., 58, 332-338. https://doi.org/10.1016/j.matdes.2014.01.068
  29. Seifi, R. and Khoda-yari, N. (2011), "Experimental and numerical studies on buckling of cracked thin-plates under full and partial compression edge loading", Thin-Wall. Struct., 49(12),1504-1516. https://doi.org/10.1016/j.tws.2011.07.010
  30. Suthar, J. and Patel, K.M. (2018), "Processing issues, machining, and applications of aluminum metal matrix composites", Mater. Manuf. Process., 33, 499-527. https://doi.org/10.1080/10426914.2017.1401713
  31. Tatar, C. and Ozdemir, N. (2010), "Investigation of thermal conductivity and microstructure of the α-Al2O3 particulate reinforced aluminum composites (Al/Al2O3-MMC) by powder metallurgy method", Physica B: Phys. Condensed Matter, 405(3), 896-899. https://doi.org/10.1016/j.physb.2009.10.010
  32. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, AA. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., Int. J., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637
  33. Wang, Z. Bing, L. and Han, Y. (2012), "Free vibration frequency variation analysis of a cracked aluminum alloy beam under high temperatures", J. Harbin Eng. Univ., 33(3), 320-324. https://doi.org/10.3969/j.issn.1006-7043.201103012
  34. Xing, M.Z., Wang, Y.G. and Jiang, Z.X. (2013), "Dynamic fracture behaviors of selected aluminum alloys under three-point bending", Defence Technol., 9(4), 193-200. https://doi.org/10.1016/j.dt.2013.11.002
  35. Yang, D.L., Yiu, Y.L., Li, S.B., Tao, J., Liu, C. and Liu, J.H. (2017), "Fatigue crack growth prediction of 7075 aluminum alloy based on the GMSVR model optimized by the artificial bee colony algorithm", Eng. Computat., 34(1), 1-14. https://doi.org/10.1108/EC-11-2015-0362