DOI QR코드

DOI QR Code

Optimal seismic retrofit design method for asymmetric soft first-story structures

  • Received : 2021.09.21
  • Accepted : 2021.12.16
  • Published : 2022.03.25

Abstract

Generally, the goal of seismic retrofit design of an existing structure using energy dissipation devices is to determine the optimum design parameters of a retrofit device to satisfy a specified limit state with minimum cost. However, the presence of multiple parameters to be optimized and the computational complexity of performing non-linear analysis make it difficult to find the optimal design parameters in the realistic 3D structure. In this study, genetic algorithm-based optimal seismic retrofit methods for determining the required number, yield strength, and location of steel slit dampers are proposed to retrofit an asymmetric soft first-story structure. These methods use a multi-objective and single-objective evolutionary algorithms, each of which varies in computational complexity and incorporates nonlinear time-history analysis to determine seismic performance. Pareto-optimal solutions of the multi-objective optimization are found using a non-dominated sorting genetic algorithm (NSGA-II). It is demonstrated that the developed multi-objective optimization methods can determine the optimum number, yield strength, and location of dampers that satisfy the given limit state of a three-dimensional asymmetric soft first-story structure. It is also shown that the single-objective distribution method based on minimizing plan-wise stiffness eccentricity turns out to produce similar number of dampers in optimum locations without time consuming nonlinear dynamic analysis.

Keywords

Acknowledgement

This research was carried out by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C2006631).

References

  1. ACI (2005), Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05), American Concrete Institute.
  2. Agha Beigi, H., Christopoulos, C., Sullivan, T. and Calvi, M. (2015), "Seismic response of a case study soft story frame retrofitted using a GIB system", Earthq. Eng. Struct. Dyn., 44(7), 997-1014. https://doi.org/10.1002/eqe.2496.
  3. Alam, Z., Zhang, C. and Samali, B. (2020), "The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced concrete structures", Earthq. Eng. Eng. Vib., 19(1), 223-237. https://doi.org/10.1007/s11803-020-0558-x.
  4. Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S., ... & Donahue, J.L. (2013), "Peer nga-west2 database".
  5. ASCE 7 (2017), Minimum Design Loads and Associated Criteria for Buildings and other Structures, American Society of Civil Engineers.
  6. Azandariani, M.G., Gholhaki, M., Kafi, M.A., Zirakian, T., Khan, A., Abdolmaleki, H. and Shojaeifar, H. (2021), "Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)", Steel Compos. Struct., 39(1), 109-123. https://doi.org/10.12989/scs.2021.39.1.109.
  7. Azandariani, M.G., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Azandariani, A.G. (2021), "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Struct., 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041.
  8. Beyer, K., Dazio, A. and Priestley, M.J.N. (2008), "Inelastic wide-column models for U-shaped reinforced concrete walls", J. Earthq. Eng., 12(S1), 1-33. https://doi.org/10.1080/13632460801922571.
  9. Blank, J. and Deb, K. (2020), "pymoo: Multi-objective optimization in python", IEEE Access, 8, 89497-89509. https://doi.org/10.1109/ACCESS.2020.2990567.
  10. Chan, R.W. and Albermani, F. (2008), "Experimental study of steel slit damper for passive energy dissipation", Eng. Struct., 30(4), 1058-1066. https://doi.org/10.1016/j.engstruct.2007.07.005.
  11. Choi, S.W., Kim, Y. and Park, H.S. (2014), "Multi-objective seismic retrofit method for using FRP jackets in shear-critical reinforced concrete frames", Compos. Part B: Eng., 56, 207-216. https://doi.org/10.1016/j.compositesb.2013.08.049.
  12. Clough, R.W., King, I.P. and Wilson, E.L. (1964), "Structural analysis of multistory buildings", J. Struct. Div., 90(3), 19-34. https://doi.org/10.1061/JSDEAG.0001087.
  13. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.A.M.T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Tran. Evol. Comput., 6(2), 182-197. https://doi.org/10.1109/4235.996017.
  14. Eldin, M.N., Kim, J. and Kim, J. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633.
  15. Gholami, M., Zare, E., Azandariani, M.G. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977.
  16. Javidan, M.M. and Kim, J. (2019), "Seismic retrofit of soft-first-story structures using rotational friction dampers", J. Struct. Eng., 145(12), 04019162. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002433.
  17. Javidan, M.M. and Kim, J. (2020), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct., 37(3), 259-272. https://doi.org/10.12989/scs.2020.37.3.259.
  18. Javidan, M.M., Nasab, M.S.E. and Kim, J. (2021), "Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers", Steel Compos. Struct., 39(5), 645-664. https://doi.org/10.12989/scs.2021.39.5.645.
  19. Kim, J. (2019), "Development of seismic retrofit devices for building structures", Int. J. High-Rise Build., 8(3), 221-227. https://doi.org/10.21022/IJHRB.2019.8.3.221.
  20. Kim, J. and Bang, S. (2002), "Optimum distribution of added viscoelastic dampers for mitigation of torsional responses of plan-wise asymmetric structures", Eng. Struct., 24(10), 1257-1269. https://doi.org/10.1016/S0141-0296(02)00046-9.
  21. Kim, J. and Jeong, J. (2016), "Seismic retrofit of asymmetric structures using steel plate slit dampers", J. Constr. Steel Res., 120, 232-244. https://doi.org/10.1016/j.jcsr.2016.02.001.
  22. Kim, Y., Lim, S.A. and Park, H.S. (2020), "Optimal seismic retrofit method for reinforced concrete columns with wing walls", Eng. Struct., 210, 110390. https://doi.org/10.1016/j.engstruct.2020.110390.
  23. Lin, W.H. and Chopra, A.K. (2001), "Understanding and predicting effects of supplemental viscous damping on seismic response of asymmetric one-storey systems", Earthq. Eng. Struct. Dyn., 30(10), 1475-1494. https://doi.org/10.1002/eqe.73.
  24. Lopez Garcia, D. and Soong, T.T. (2002), "Efficiency of a simple approach to damper allocation in MDOF structures", J. Struct. Control, 9, 19-30. https://doi.org/10.1002/stc.3.
  25. MacLeod, I.A. (1973), "Analysis of shear wall buildings by the frame method", Proc. Inst. Civil Eng., 55(3), 593-603. https://doi.org/10.1680/iicep.1973.4691.
  26. McKenna, F., Scott, M.H. and Fenves, G.L. (2010), "Nonlinear finite-element analysis software architecture using object composition", J. Comput. Civil Eng., 24(1), 95-107. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000002.
  27. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H. (2020), "Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36(2), 163-177. https://doi.org/10.12989/scs.2020.36.2.163.
  28. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2019), "Experimental and numerical investigation of an innovative buckling-restrained fuse under cyclic loading", Struct., 22, 186-199. https://doi.org/10.1016/j.istruc.2019.07.014.
  29. Naeem, A. and Kim, J. (2018), "Seismic retrofit of a framed structure using damped cable systems", Steel Compos. Struct., 29(3), 287-299. https://doi.org/10.12989/scs.2018.29.3.287.
  30. Naeem, A. and Kim, J. (2019), "Seismic performance evaluation of a multi-slit damper", Eng. Struct., 189, 332-346. https://doi.org/10.1016/j.engstruct.2019.03.107.
  31. Noureldin, M., Ahmed, S. and Kim, J. (2021), "Self-centering steel slotted friction device for seismic retrofit of beam-column joints", Steel Compos. Struct., 41(1), 13-30. https://doi.org/10.12989/scs.2021.41.1.013.
  32. NourEldin, M., Naeem, A. and Kim, J. (2019), "Life-cycle cost evaluation of steel structures retrofitted with steel slit damper and shape memory alloy-based hybrid damper", Adv. Struct. Eng., 22(1), 3-16. https://doi.org/10.1177/1369433218773487.
  33. Puthanpurayil, A.M., Lavan, O. and Dhakal, R.P. (2020), "Multi-objective loss-based optimization of viscous dampers for seismic retrofitting of irregular structures", Soil Dyn. Earthq. Eng., 129, 105765. https://doi.org/10.1016/j.soildyn.2019.105765.
  34. Rousta, A.M., Shojaeifar, H., Azandariani, M.G., Saberiun, S. and Abdolmaleki, H. (2021), "Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers", Struct. Eng. Mech., 80(2), 129-142. https://doi.org/10.12989/sem.2021.80.2.129.
  35. Sahoo, D.R. and Rai, D.C. (2013), "Design and evaluation of seismic strengthening techniques for reinforced concrete frames with soft ground story", Eng. Struct., 56, 1933-1944. https://doi.org/10.1016/j.engstruct.2013.08.018.
  36. Takewaki, I. (1997), "Optimal damper placement for minimum transfer functions", Earthq. Eng. Struct. Dyn., 26, 1113-24. https://doi.org/10.1002/(SICI)1096-9845(199711)26:11<1113::AID-EQE696>3.0.CO;2-X.
  37. Yousef-beik, S.M.M., Bagheri, H., Veismoradi, S., Zarnani, P., Hashemi, A. and Quenneville, P. (2020), "Seismic performance improvement of conventional timber brace using re-centring friction connection", Struct., 26, 958-968. https://doi.org/10.1016/j.istruc.2020.05.029.
  38. Zhang, R.H. and Soong, T.T. (1992), "Seismic design of viscoelastic dampers for structural applications", J. Struct. Eng., 118(5), 1375-1392. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1375).
  39. Zhu, M., McKenna, F. and Scott, M. H. (2018), "OpenSeesPy: Python library for the OpenSees finite element framework", SoftwareX, 7, 6-11. https://doi.org/10.1016/j.softx.2017.10.009.