DOI QR코드

DOI QR Code

Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells

  • Bochkareva, Sergey A. (Institute of Continuous Media Mechanics, Ural Branch Russian Academy of Sciences) ;
  • Lekomtsev, Sergey V. (Institute of Continuous Media Mechanics, Ural Branch Russian Academy of Sciences)
  • 투고 : 2021.06.19
  • 심사 : 2022.01.12
  • 발행 : 2022.03.25

초록

This paper studies the dynamic behavior of laminated composite circular cylindrical shells interacting with a fluid. The mathematical formulation of the dynamic problem for an elastic body is developed based on the variational principle of virtual displacements and the relations of linear elasticity theory. The behavior of an ideal compressible fluid is described by the potential theory, the equations of which together with boundary conditions are transformed to a weak form. The hydrodynamic pressure exerted by the fluid on the internal surface of the shell is calculated according to the linearized Bernoulli equation. The numerical implementation of the mathematical formulation has been done using the semi-analytical finite element method. The influence of the ply angle and lay-up configurations of laminated composites on the natural vibration frequencies and the hydroelastic stability boundary have been analyzed for shells with different geometrical dimensions and under different kinematic boundary conditions set at their edges. It has been found that the optimal value of the ply angle depends on the level of filling of the shell with a fluid. The obtained results support the view that by choosing the optimal configuration of the layered composite material it is possible to change upwards or downwards the frequency and mode shape, as well as the critical velocity for stability loss over a wide range.

키워드

과제정보

The study was made in the framework of the government order; state registration number of theme AAAA-A19-119021490136-7.

참고문헌

  1. Alfutov, N.A., Zinov'ev, P.A. and Popov, B.G. (1984), Analysis of Multilayer Plates and Shells of Composite Materials, Mashinosiroenie, Moscow.
  2. Alijani, F. and Amabili, M. (2014), "Nonlinear vibrations and multiple resonances of fluid filled arbitrary laminated circular cylindrical shells", Compos. Struct., 108, 951-962. https://doi.org/10.1016/j.compstruct.2013.10.029.
  3. Amabili, M. (1996), "Free vibration of partially filled, horizontal cylindrical shells", J. Sound Vib., 191(5), 757-780. https://doi.org/10.1006/jsvi.1996.0154.
  4. Bochkarev, S.A. and Lekomtsev, S.V. (2021), "Stability analysis of composite cylindrical shell containing rotating fluid", J. Phys.: Conf. Ser., 1945, 012034. https://doi.org/10.1088/1742-6596/1945/1/012034.
  5. Bochkarev, S.A. and Matveenko, V.P. (2008), "Numerical study of the influence of boundary conditions on the dynamic behavior of a cylindrical shell conveying a fluid", Mech. Solid., 43(3), 477-486. https://doi.org/10.3103/S0025654408030187.
  6. Carrera, E. (2003), "Historical review of ZIG-ZAG theories for multilayered plates and shells", Appl. Mech. Rev., 56(3), 287-308. https://doi.org/10.1115/1.1557614.
  7. Chehreghani, M., Pazhooh, M.D. and Shakeri M. (2019), "Vibration analysis of a fluid conveying sandwich cylindrical shell with a soft core", Compos. Struct., 230, 111470. https://doi.org/10.1016/j.compstruct.2019.111470.
  8. Dai, Q., Qin, Z. and Chu, F. (2021), "Parametric study of damping characteristics of rotating laminated composite cylindrical shells using Haar wavelets", Thin Wall. Struct., 161, 107500. https://doi.org/10.1016/j.tws.2021.107500.
  9. Firouz-Abadi, R.D., Haddadpour, H. and Kouchakzadeh, M.A. (2009), "Free vibrations of composite tanks partially filled with fluid", Thin Wall. Struct., 47(12), 1567-1574. https://doi.org/10.1016/j.tws.2009.05.007.
  10. Hien, V.Q., Thinh, T.I. and Cuong, N.M. (2016), "Free vibration analysis of joined composite conical-cylindrical-conical shells containing fluid", Vietnam J. Mech., 38(4), 249-265. https://doi.org/10.15625/0866-7136/6954.
  11. Ilgamov, M.A. (1969), Oscillations of Elastic Shells Containing Liqiud and Gas, Nauka, Moscow.
  12. Jones, R.M. (1998), Mechanics of Composite Materials, 2nd Edition, Hemisphere Publishing Corporation, New York.
  13. Kadoli, R. and Ganesan, N. (2003), "Free vibration and buckling analysis of composite cylindrical shells conveying hot fluid", Compos. Struct., 60(1), 19-32. https://doi.org/10.1016/S0263-8223(02)00313-6.
  14. Kochupillai, J., Ganesan, N. and Padmanabhan, C. (2002), "A semi-analytical coupled finite element formulation for composite shells conveying fluids", J. Sound Vib., 258(2), 287-307. https://doi.org/10.1006/jsvi.2002.5176.
  15. Kumar, A., Chakrabarti, A. and Bhargava, P. (2013a), "Finite element analysis of laminated composite and sandwich shells using higher order zigzag theory", Compos. Struct., 106, 270-281. https://doi.org/10.1016/j.compstruct.2013.06.021.
  16. Kumar, A., Chakrabarti, A. and Bhargava, P. (2013b), "Vibration of laminated composites and sandwich shells based on higher order zigzag theory", Eng. Struct., 56, 880-888. https://doi.org/10.1016/j.engstruct.2013.06.014.
  17. Kumar, A., Chakrabarti, A. and Bhargava, P. (2014), "Accurate dynamic response of laminated composites and sandwich shells using higher order zigzag theory", Thin Wall. Struct., 77, 174-186. https://doi.org/10.1016/j.tws.2013.09.026
  18. Lehoucq, R.B. and Sorensen, D.C. (1996), "Deflation techniques for an implicitly restarted Arnoldi iteration", SIAM J. Matrix Anal. Appl., 17(4), 789-821. https://doi.org/10.1137/S0895479895281484.
  19. Li, D. (2021), "Layerwise theories of laminated composite structures and their applications: A review", Arch. Comput. Meth. Eng., 28(2), 577-600. https://doi.org/10.1007/s11831-019-09392-2.
  20. Lia, H., Lv, H., Sun, H., Qin, Z., Xiong, J., Han, Q., Liu, J. and Wang, X. (2021), "Nonlinear vibrations of fiber-reinforced composite cylindrical shells with bolt loosening boundary conditions", J. Sound Vib., 496, 115935. https://doi.org/10.1016/j.jsv.2021.115935.
  21. Mikhasev, G.I. and Altenbach, H. (2019), Thin-Walled Laminated Structures: Buckling, Vibrations and Their Suppression, Springer, Cham.
  22. Miramini, S.M. and Ohadi, A. (2019), "Three-dimensional vibration of fluid-conveying laminated composite cylindrical shells with piezoelectric layers", Int. J. Struct. Stab. Dyn., 19(3), 1950026. https://doi.org/10.1142/S0219455419500263.
  23. Muggeridge, D.B. and Buckley, T.J. (1979a), "Flexural vibration of orthotropic cylindrical shells in a fluid medium", AIAA J., 17(9), 1019-1022. https://doi.org/10.2514/3.61270.
  24. Muggeridge, D.B. and Buckley, T.J. (1979b), "Dynamics of a fluid conveying fiber-reinforced shell", AIAA J., 17(6), 663-666. https://doi.org/10.2514/3.61197.
  25. Nurul Izyan, M.D. and Viswanathan, K.K. (2019), "Vibration of symmetrically layered angle-ply cylindrical shells filled with fluid", Plos one, 4(7), e0219089. https://doi.org/10.1371/journal.pone.0219089.
  26. Nurul Izyan, M.D., Aziz, Z.A. and Viswanathan, K.K. (2018), "Free vibration of anti-symmetric angle-ply layered circular cylindrical shells filled with quiescent fluid under first order shear deformation theory", Compos. Struct., 193, 189-197. https://doi.org/10.1016/j.compstruct.2018.03.034.
  27. Nurul Izyan, M.D., Aziz, Z.A., Ghostine, R., Lee, J.H. and Viswanathan, K.K. (2019), "Free vibration of cross-ply layered circular cylindrical shells filled with quiescent fluid under first order shear deformation theory", Int. J. Press. Ves. Pip., 170, 73-81. https://doi.org/10.1016/j.ijpvp.2019.01.019.
  28. Okazaki, K., Tani, J. and Sugano, M. (1999), "Free vibrations of a laminated composite circular cylindrical shell partially filled with liquid", Tran. JPN Soc. Mech. Eng. Ser. C, 65(640), 4597-4604. https://doi.org/10.1299/kikaic.65.4597.
  29. Okazaki, K., Tani, J. and Sugano, M. (2002), "Free vibrations of a laminated composite coaxial circular cylindrical shell partially filled with liquid", Tran. JPN Soc. Mech. Eng. Ser. C, 68(671), 1942-1949. https://doi.org/10.1299/kikaic.68.1942.
  30. Okazaki, K., Tani, J., Qiu, J. and Kosugo, K. (2007), "Vibration test of a cross-ply laminated composite circular cylindrical shell partially filled with liquid", Tran. JPN Soc. Mech. Eng. Ser. C, 73(727), 724-731. https://doi.org/10.1299/kikaic.73.724.
  31. Paidoussis, M.P. (2016), Fluid-Structure Interactions: Slender Structures and Axial Flow, Vol. 2, 2nd Edition, Elsevier Academic Press, London. https://doi.org/10.1016/C2011-0-08058-4.
  32. Paidoussis, M.P. and Denise, J.P. (1972), "Flutter of thin cylindrical shells conveying fluid", J. Sound Vib., 20(1), 9-26. https://doi.org/10.1016/0022-460X(72)90758-4.
  33. Pal, N.C., Bhattacharyya, S.K. and Sinha, P.K. (1999), "Coupled slosh dynamics of liquid-filled, composite cylindrical tanks", J. Eng. Mech., 125(4), 491-495. https://doi.org/10.1061/(asce)0733-9399(1999)125:4(491).
  34. Pal, N.C., Bhattacharyya, S.K. and Sinha, P.K. (2003), "Non-linear coupled slosh dynamics of liquid-filled laminated composite containers: a two dimensional finite element approach", J. Sound Vib., 261(4), 729-749. https://doi.org/10.1016/S0022-460X(02)01011-8.
  35. Petrolo, M. and Carrera, E. (2020), "Methods and guidelines for the choice of shell theories", Acta Mechanica, 231(2), 395-434. https://doi.org/10.1007/s00707-019-02601-w.
  36. Qatu, M.S., Asadi, E. and Wang, W. (2012), "Review of recent literature on static analyses of composite shells: 2000-2010", Open J. Compos. Mater., 2(3), 61-86. https://doi.org/10.4236/ojcm.2012.23009.
  37. Qu, Y., Long, X., Wu, S. and Meng, G. (2013), "A unified formulation for vibration analysis of composite laminated shells of revolution including shear deformation and rotary inertia", Compos. Struct., 98, 169-191. https://doi.org/10.1016/j.compstruct.2012.11.001.
  38. Ramasamy, R. and Ganesan, N. (1999), "Vibration and damping analysis of fluid filled orthotropic cylindrical shells with constrained viscoelastic damping", Comput. Struct., 70(3), 363-376. https://doi.org/10.1016/S0045-7949(98)00192-8.
  39. Ray, M.C. and Reddy, J.N. (2013), "Active damping of laminated cylindrical shells conveying fluid using 1-3 piezoelectric composites", Compos. Struct., 98, 261-271. https://doi.org/10.1016/j.compstruct.2012.09.051.
  40. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2 Edition, CRC Press, Florida.
  41. Reddy, J.N. and Liu, C.F. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5.
  42. Sahebnasagh, M., Nikkhah-Bahrami, M. and Firouz-Abadi, R. (2017), "Stability analysis of whirling composite shells partially filled with two liquid phases", J. Mech. Sci. Technol., 31(5), 2117-2127. https://doi.org/10.1007/s12206-017-0408-6.
  43. Sharma, C.B., Darvizeh, M. and Darvizeh, A. (1998), "Natural frequency response of vertical cantilever composite shells containing fluid", Eng. Struct., 20(8), 732-737. https://doi.org/10.1016/S0141-0296(97)00102-8.
  44. Sheinman, I. and Greif, S. (1984), "Dynamic analysis of laminated shells of revolution", J. Compos. Mater., 18(3), 200-215. https://doi.org/10.1177/002199838401800301.
  45. Sundarasivarao, B.S.K. and Ganesan, N. (1991), "Deformation of varying thickness composite cylindrical shell subjected to fluid loading with various end conditions", Comput. Struct., 41(1), 67-74. https://doi.org/10.1016/0045-7949(91)90156-G.
  46. Thinh, T.I. and Cuong, N.M. (2016), "Dynamic Stiffness Method for free vibration of composite cylindrical shells containing fluid", Appl. Math. Model., 40(21), 9286-9301. https://doi.org/10.1016/j.apm.2016.06.015.
  47. Toorani, M.H. and Lakis, A.A. (2001a), "Shear deformation in dynamic analysis of anisotropic laminated open cylindrical shells filled with or subjected to a flowing fluid", Comput. Meth. Appl. Mech. Eng., 190(37), 4929-4966. https://doi.org/10.1016/S0045-7825(00)00357-1.
  48. Toorani, M.H. and Lakis, A.A. (2001b), "Dynamic analysis of anisotropic cylindrical shells containing flowing fluid", J. Press. Ves. Technol., 123(4), 454-460. https://doi.org/10.1115/1.1401023.
  49. Toorani, M.H. and Lakis, A.A. (2003), "Dynamics behavior of axisymmetric and beam-like anisotropic cylindrical shells conveying fluid", J. Sound Vib., 259(2), 265-298. https://doi.org/10.1006/jsvi.2002.5161.
  50. Tooth, A.S., Banks, W.M. and Rahman, D.H.A. (1988), "The specially orthotropic GRP multi-layered cylindrical shell-The fluid loading of the partially filled horizontal vessel or pipe", Compos. Struct., 9(2), 101-111. https://doi.org/10.1016/0263-8223(88)90002-5.
  51. Xi, Z.C., Yam, L.H. and Leung, T.P. (1997a), "Free vibration of a laminated composite circular cylindrical shell partially filled with fluid", Compos. Part B: Eng., 28(4), 359-374. https://doi.org/10.1016/S1359-8368(96)00047-9.
  52. Xi, Z.C., Yam, L.H. and Leung, T.P. (1997b), "Free vibration of a partially fluid-filled cross-ply laminated composite circular cylindrical shell", J. Acoust. Soc. Am., 101(2), 909-917. https://doi.org/10.1121/1.418049.
  53. Zhang, Y.L., Reese, J.M. and Gorman, D.G. (2002), "A comparative study of axisymmetric finite elements for the vibration of thin cylindrical shells conveying fluid", Int. J. Numer. Meth. Eng., 54(1), 89-110. https://doi.org/10.1002/nme.418.
  54. Zhu, H.Z. and Wu, J.H. (2020), "Free vibration of partially fluid-filled or fluid-surrounded composite shells using the dynamic stiffness method", Acta Mechanica, 231(9), 3961-3978. https://doi.org/10.1007/s00707-020-02734-3.