Acknowledgement
The project was supported by the National Natural Science Foundations of China (11902355).
References
- Bayar, G. and Bilir, T. (2019), "A novel study for the estimation of crack propagation in concrete using machine learning algorithms", Constr. Build. Mater., 215, 670-685. https://doi.org/10.1016/j.conbuildmat.2019.04.227.
- Belytschko, T., Gracie, R. and Ventura, G. (2009), "A review of extended/generalized finite element methods for material modeling", Model. Simul. Mater. Sci., 17(4), 1-24. https://doi.org/10.1088/09650393/17/4/043001.
- Corps, U.A. (1995), Gravity Dam Design, Engineers O, USA.
- Dai, B., Gu, C. and Zhao, E. (2019), "Improved online sequential extreme learning machine for identifying crack behavior in concrete dam", Adv. Struct. Eng., 22(2), 402-412. https://doi.org/10.1177/1369433218788635.
- Ding, B.Y., Wang, G.B. and Huang, S.P. (1994), "A review on causes of cracking in domestic concrete dams and preventive measures", Water Resour. Hydrop. Eng., 4, 12-18. https://doi.org/CNKI:SUN:SJWJ.0.1994-04-002.
- Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K. and Darrell, T. (2015), "Long-term recurrent convolutional networks for visual recognition and description", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2625-2634.
- Dong, W., Song, S., Zhang, B. and Yang, D. (2019), "SIF-based fracture criterion of rock-concrete interface and its application to the prediction of cracking paths in gravity dam", Eng. Fract. Mech., 221, 106686. https://doi.org/10.1016/j.engfracmech.2019.106686.
- Ford, E., Maneparambil, K. and Rajan, S. (2021), "Machine learning-based accelerated property prediction of two-phase materials using microstructural descriptors and finite element analysis", Comput. Mater. Sci., 191(7), 110328. https://doi.org/10.1016/j.commatsci.2021.110328.
- Frechet and Maurice, M. (1906), "Sur quelques points du calcul fonctionnel", Rendiconti del Circolo Matematico di Palermo (1884-1940), 22(1), 1-72. https://doi.org/10.1007/BF03018603.
- Ganasan, R., Tan, C.G., Ibrahim, Z., Nazri, F.M., Sherif, M.M. and El-Shafie, A. (2021), "Development of crack width prediction models for RC beam-column joint subjected to lateral cyclic loading using machine learning", Appl. Sci., 11(16), 7700. https://doi.org/10.3390/app11167700.
- Gong, D.G., Qu, Z.Q. and Li, J.X. (2016), "Extended finite element simulation of hydraulic fracture based on ABAQUS platform", Rock Soil Mech., 37(5), 1512-1520. https://doi.org/10.16285/j.rsm.2016.05.036.
- Graves, A. (2012), Supervised Sequence Labelling with Recurrent Neural Networks, Springer, Germany.
- Hanson, J., Yang, Y.D. and Paliwal, K. (2017), "Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks", Bioinform., 33(5), 685-692. https://doi.org/10.1093/bioinformatics/btw678.
- Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neur. Comput., 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.
- International Commission on Large Dams (1984), World Register of Dams, Washington, USA.
- Jekel, C.F., Venter, G. and Venter, M.P. (2019), "Similarity measures for identifying material parameters from hysteresis loops using inverse analysis", Int. J. Mater. Form., 12(3), 355-378. https://doi.org/10.1007/s12289-018-1421-8.
- Jin, H.L., Wang, B. and Wang, Y.P. (2018), "Experimental study on near-field shock wave propagation of underwater explosion of TNT with different charge shapes", Chin. J. Explos. Propel., 41(5), 461-500. https://doi.org/CNKI:SUN:BGXB.0.2018-05-009.
- Li, D.Z. (2009), "Numerical analysis of dynamic behavior of RC slabs under blast loading", Tran. Tianjin Univ., 1, 61-64. https://doi.org/10.1007/s12209-009-0012-7.
- Li, Y., Bao, T. and Shu, X. (2020), "A Hybrid model integrating principal component analysis, fuzzy C-means, and gaussian process regression for dam deformation prediction", Arab. J. Sci. Eng., Appl. Acoust., 46, 4293-4306. https://doi.org/10.1007/s13369-020-04923-7.
- Lin, J.Y. (2019), Hydraulic Structure, China Water and Power Press, Beijing, China.
- Ma, X.L., Tao, Z.M. and Wang, Y.H. (2015), "Long short-term memory neural network for traffic speed prediction using remote microwave sensor data", Transp. Res. Part C: Emerg. Technol., 54, 187-197. https://doi.org/10.1016/j.trc.2015.03.014.
- Masoud, A. and Zhang, C.W. (2021), "Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading", Struct. Eng. Mech., 77(4), 441-461. https://doi.org/10.12989/sem.2021.77.4.441.
- Mo, S.N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:13.0.CO;2-J.
- Muir, C., Swaminathan, B., Almansour, A.S., Sevener, K., Smith, C., Presby, M., ... & Daly, S. (2021), "Damage mechanism identification in composites via machine learning and acoustic emission", Comput. Mater., 7(1), 1-15. https://doi.org/10.1038/s41524021-00565-x.
- Qiu, L., Shen, Z. and Fuheng, M.A. (2019), "Application of MLR-Legendre polynomials model in concrete dam crack opening prediction", Hydro-Sci. Eng., 2, 111-119. https://doi.org/10.16198/j.cnki.1009-640X.2019.02.016.
- Rafiei, M.H., Khushefati, W.H., Demirboga, R. and Adeli, H. (2021), "Neural network, machine learning, and evolutionary approaches for concrete material characterization", Appl. Sci., 113(6), 781-789. https://doi.org/10.14359/51689360.
- Shojaee, S., Ghelichi, M. and Iz, A.P. (2013), "Combination of isogeometric analysis and extended finite element in linear crack analysis", Struct. Eng. Mech., 48(1), 125-150. https://doi.org/10.12989/sem.2013.48.1.125.
- Shu, X. and Min, L.U. (2019), "Dam crack prediction based on GA-BP neural network model", Henan Sci. Technol., 22(1), 79-81. https://doi.org/CNKI:SUN:HNKJ.0.2019-22-030.
- Songlin, Z.H.A.N.G., Dongliang, M.A. and Deyu, W.A.N.G. (2021), "Method for plate crack damage detection based on long short-term memory neural network", Appl. Sci., 55(5), 527-535. https://doi.org/10.16183/j.cnki.jsjtu.2020.095.
- Srivastav (2015), "Unsupervised learning of video representations using lstms", International Conference on Machine Learning, Lile, France, July.
- Stazi, F.L., Budyn, E. and Chessa, J. (2003), "An extended finite element method with higher-order elements for curved cracks", Comput. Mech., 31(1-2), 38-48. https://doi.org/10.1007/s00466-002-0391-2.
- Szelg, M. (2020), "Application of an automated digital image-processing method for quantitative assessment of cracking patterns in a lime cement matrix", Sensor., 20(14), 38-59. https://doi.org/10.3390/s20143859.
- Tahmina, T.N., Md, M.R. and Dookie, K. (2021), "Damage index based seismic risk generalization for concrete gravity dams considering FFDI", Struct. Eng. Mech., 78(1), 53-66. https://doi.org/10.12989/sem.2021.78.1.053.
- Vinyals, O., Toshev, A., Bengio, S. and Erhan, D. (2015), "Show and tell: A neural image caption generator", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3156-3164.
- Wang, L., Guo, S.G. and Jiang, Y. (2019), "A method of landing operation evaluation based on curve similarity", J. Transp. Inform. Saf., 37(6), 63-69. https://doi.org/10.3963/j.issn.1674-4861.2019.06.008.
- Wang, X., Wu, J. and Liu, C. (2018), "Exploring LSTM based recurrent neural network for failure time series prediction", J. Beijing Univ. Aeronaut. Astronaut, 44(4), 772-784. https://doi.org/10.13700/j.bh.1001-5965.2017.0285.
- Xu, Q., Deng, T. and Dong, W. (2009), "Numerical analysis of complete crack propagation process in concrete gravity dams based on crack propagation criterion", J. Arch. Civil Eng., 26(3), 49-54. https://doi.org/10.3321/j.issn:1673-2049.2009.03.008.
- Yangtze River Survey, Planning, Design and Research Institute (1995), Design Code for Concrete Gravity Dam SL 319-2018, China.
- You, J., Jin, K. and Jiang, Y. (2016), "Prediction of dam cracks based on AFSA-Grey neural network", Yellow River, 39(11), 136-139. https://doi.org/10.3969/j.issn.1000-1379.2016.11.033.
- Zhang, C., Long, Y. and Zhou, Y. (2008), "A comparative study for concrete fracture analysis using smeared and discrete crack model", Eng. Mech., 25(3), 80-84. https://doi.org/10.1016/S18725791(08)60058-5.
- Zhang, Q., Barri, K., Babanajad, S.K. and Alavi, A.H. (2020), "Real-time detection of cracks on concrete bridge decks using deep learning in the frequency domain", Eng. Fract.Mech., 7(12), 1786-1796. https://doi.org/10.1016/j.eng.2020.07.026.
- Zhang, X., Zou, Z. and Wang, K. (2018), "A new rail crack detection method using LSTM network for actual application based on AE technology", Appl. Acoust., 142, 78-86. https://doi.org/10.1016/j.apacoust.2018.08.020.
- Zhuang, Z. (2012), Extended Finite Element Method, Tsinghua University Press, Beijing, China.