DOI QR코드

DOI QR Code

Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment

  • Alimoradzadeh, M. (Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University) ;
  • Akbas, S.D. (Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University)
  • Received : 2021.08.01
  • Accepted : 2021.12.22
  • Published : 2022.03.25

Abstract

The aim of this paper is to investigate nonlinear dynamic responses of functionally graded composite beam resting on the nonlinear viscoelastic foundation subjected to moving mass with temperature rising. The non-linear strain-displacement relationship is considered in the finite strain theory and the governing nonlinear dynamic equation is obtained by using the Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then the governing equation is solved by using of multiple time scale method. The influences of temperature rising, material distribution parameter, nonlinear viscoelastic foundation parameters, magnitude and velocity of the moving mass on the nonlinear dynamic responses are investigated. Also, the buckling temperatures of the functionally graded beams based on the finite strain theory are obtained.

Keywords

References

  1. Akbas, S.D. (2013a), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Math. Prob. Eng., 2013, Article ID 871815. https://doi.org/10.1155/2013/871815.
  2. Akbas, S.D. (2013b), "Free vibration characteristics of edge cracked functionally graded beams by using finite element method", Int. J. Eng. Trend. Technol., 4(10), 4590-4597.
  3. Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
  4. Akbas, S.D. (2017a), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375.
  5. Akbas, S.D. (2017b), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579.
  6. Akbas, S.D. (2018a), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
  7. Akbas, S.D. (2018b), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. http://doi.org/10.12989/sem.2018.67.4.337.
  8. Akbas, S.D. (2018c), "Investigation of static and vibration behaviors of a functionally graded orthotropic beam", Balikesir Universitesi Fen Bilimleri Enstitusu Dergisi, 1-14. https://doi.org/10.25092/baunfbed.343227.
  9. Akbas, S.D. (2018d), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059.
  10. Akbas, S.D. (2019a), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech., 5(2), 477-485. http://doi.org/10.22055/JACM.2018.26819.1360.
  11. Akbas, S.D. (2019b), "Hygro-thermal post-buckling analysis of a functionally graded beam", Couple. Syst. Mech., 8(5), 459-471. http://doi.org/10.12989/csm.2019.8.5.459.
  12. Akbas, S.D. (2019c), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(1), 1950009. https://doi.org/10.1142/S1758825119500091.
  13. Akbas, S.D. (2019d), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. http://doi.org/10.12989/sem.2019.72.4.433.
  14. Akbas, S.D. (2019e), "Post-buckling analysis of a fiber reinforced composite beam with crack", Eng. Fract. Mech., 212, 70-80. https://doi.org/10.1016/j.engfracmech.2019.03.007.
  15. Akbas, S.D. (2019f), "Nonlinear behavior of fiber reinforced cracked composite beams", Steel Compos. Struct., 30(4), 327-336. https://doi.org/10.12989/scs.2019.30.4.327.
  16. Akbas, S.D. (2020), "Geometrically nonlinear analysis of axially functionally graded beams by using finite element method", J. Comput. Appl. Mech., 51(2), 411-416. https://doi.org/10.22059/JCAMECH.2020.309019.548.
  17. Akbas, S.D. (2021a), "Forced vibration responses of axially functionally graded beams by using Ritz method", J. Appl. Comput. Mech., 7(1), 109-115. http://doi.org/10.22055/JACM.2020.34865.2491.
  18. Akbas, S.D. (2021b), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811.
  19. Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech., 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109.
  20. Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stress., 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397.
  21. Alimoradzadeh, M., Akbas, S.D. and Esfrajani, S.M. (2021), "Nonlinear dynamic and stability of a beam resting on the nonlinear elastic foundation under thermal effect based on the finite strain theory", Struct. Eng. Mech., 80(3), 275-284. https://doi.org/10.12989/sem.2021.80.3.275.
  22. Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2019), "Nonlinear dynamic response of an axially functionally graded (AFG) beam resting on nonlinear elastic foundation subjected to moving load", Nonlin. Eng., 8(1), 250-260. https://doi.org/10.1515/nleng-2018-0051.
  23. Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2020), "Nonlinear vibration analysis of axially functionally graded microbeams based on nonlinear elastic foundation using modified couple stress theory", Periodica Polytechnica Mech. Eng., 64(2), 97-108. https://doi.org/10.3311/PPme.11684.
  24. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  25. Ansari, M., Esmailzadeh, E. and Younesian, D. (2010), "Internal-external resonance of beams on non-linear viscoelastic foundation traversed by moving load", Nonlin. Dyn., 61(1), 163-182. https://doi.org/10.1007/s11071-009-9639-0.
  26. Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457.
  27. Chen, X.L. and Liew, K.M. (2004), "Buckling of rectangular functionally graded material plates subjected to nonlinearly distributed in-plane edge loads", Smart Mater. Struct., 13(6), 1430. https://doi.org/10.1088/0964-1726/13/6/014.
  28. Chen, Y., Fu, Y., Zhong, J. and Tao, C. (2017), "Nonlinear dynamic responses of fiber-metal laminated beam subjected to moving harmonic loads resting on tensionless elastic foundation", Compos. Part B: Eng., 131, 253-259. https://doi.org/10.1016/j.compositesb.2017.07.051.
  29. Civalek, O. (2019), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Meth. Eng., 11, 205-216. https://doi.org/10.1002/nme.6254.
  30. Cui, D. and Hu, H. (2014), "Thermal buckling and natural vibration of the beam with an axial stick-slip-stop boundary", J. Sound Vib., 333(8), 2271-2282. https://doi.org/10.1016/j.jsv.2013.11.042.
  31. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  32. Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 2016, Article ID 9561504. http://doi.org/10.1155/2016/9561504.
  33. Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B: Eng., 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022.
  34. Fernandes, R., Mousavi, S.M. and El-Borgi, S. (2016), "Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory", Acta Mechanica, 227, 2657-2670. https://doi.org/10.1007/s00707-016-1646-x.
  35. Ghayesh, M.H. (2009), "Stability characteristics of an axially accelerating string supported by an elastic foundation", Mech. Mach. Theory, 44(10), 1964-1979. https://doi.org/10.1016/j.mechmachtheory.2009.05.004.
  36. Ghayesh, M.H. (2012), "Nonlinear dynamic response of a simply-supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring", Nonlin. Anal.: Real World Appl., 13(3), 1319-1333. https://doi.org/10.1016/j.nonrwa.2011.10.009.
  37. Ghayesh, M.H. (2018a), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004.
  38. Ghayesh, M.H. (2018b), "Nonlinear vibrations of axially functionally graded Timoshenko tapered beams", J. Comput. Nonlin. Dyn., 13(4), 041002. https://doi.org/10.1115/1.4039191.
  39. Ghayesh, M.H. (2018c), "Nonlinear dynamics of multilayered microplates", J. Comput. Nonlin. Dyn., 13(2), 021006. https://doi.org/10.1115/1.4037596.
  40. Ghayesh, M.H. (2019a), "Nonlinear oscillations of FG cantilevers", Appl. Acoust., 145, 393-398. https://doi.org/10.1016/j.apacoust.2018.08.014.
  41. Ghayesh, M.H. (2019b), "Asymmetric viscoelastic nonlinear vibrations of imperfect AFG beams", Appl. Acoust., 154, 121-128. https://doi.org/10.1016/j.apacoust.2019.03.022.
  42. Ghayesh, M.H., Amabili, M. and Paidoussis, M.P. (2012a), "Thermo-mechanical phase-shift determination in Coriolis mass-flowmeters with added masses", J. Fluid. Struct., 34, 1-13. https://doi.org/10.1016/j.jfluidstructs.2012.05.003.
  43. Ghayesh, M.H., Kazemirad, S. and Reid, T. (2012b), "Nonlinear vibrations and stability of parametrically exited systems with cubic nonlinearities and internal boundary conditions: A general solution procedure", Appl Math. Model., 36(7), 3299-3311. https://doi.org/10.1016/j.apm.2011.09.084.
  44. Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings", Compos. Part B: Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023.
  45. Kirlangic, O. and Akbas, S.D. (2021), "Dynamic responses of functionally graded and layered composite beams", Smart Struct. Syst., 27(1), 115-122. https://doi.org/10.12989/sss.2021.27.1.115.
  46. Kocaturk, T. and Akbas, S.D. (2010), "Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material", Struct. Eng. Mech., 35(6), 677-697. https://doi.org/10.12989/sem.2010.35.6.677.
  47. Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347
  48. Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties", Steel Compos. Struct., 15(5), 481-505. https://doi.org/10.12989/scs.2013.15.5.481.
  49. Li, Y. H., Wang, L. and Yang, E. C. (2018), "Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads", Int. J. Nonlin. Mech., 101, 56-67. https://doi.org/10.1016/j.ijnonlinmec.2018.02.007.
  50. Malekzadeh, P. and Monajjemzadeh, S.M. (2016), "Dynamic response of functionally graded beams in a thermal environment under a moving load", Mech. Adv. Mater. Struct., 23(3), 248-258. https://doi.org/10.1080/15376494.2014.949930.
  51. Malekzadeh, P. and Vosoughi, A. R. (2008), "Large amplitude free vibration analysis of composite plates with rotationally restrained edges using DQM", J. Reinf. Plast. Compos., 27(4), 409-430. https://doi.org/10.1177/0731684407084123.
  52. Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges", Commun. Nonlin. Sci. Numer. Simul., 14(3), 906-915. https://doi.org/10.1177/0731684407084123.
  53. Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani M.M. (2021), "Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations", Steel Compos. Struct., 39(5), 631-643. http://doi.org/10.12989/scs.2021.39.5.631.
  54. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Struct., 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
  55. Nayfeh, A.H., Mook, D. T. and Holmes, P. (1980), "Nonlinear oscillations", ASME. J. Appl. Mech., 47(3), 692. https://doi.org/10.1115/1.3153771.
  56. Norouzi, H. and Younesian, D. (2015), "Chaotic vibrations of beams on nonlinear elastic foundations subjected to reciprocating loads", Mech. Res. Commun., 69, 121-128. https://doi.org/10.1016/J.MECHRESCOM.2015.07.001.
  57. Pegios, I.P. and Hatzigeorgiou, G.D. (2018), "Finite element free and forced vibration analysis of gradient elastic beam structures", Acta Mechanica, 229(12), 4817-4830. https://doi.org/10.1007/s00707-018-2261-9.
  58. Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.
  59. Rao, S.S. (2019). Vibration of Continuous Systems, John Wiley & Sons.
  60. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Bedia, E.A., Mahmoud S.R., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  61. Sheng, G.G. and Wang, X. (2019), "Nonlinear forced vibration of functionally graded Timoshenko microbeams with thermal effect and parametric excitation", Int. J. Mech. Sci., 155, 405-416. https://doi.org/10.1016/j.ijmecsci.2019.03.015.
  62. Simsek, M. (2014), "Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He's variational method", Compos. Struct., 112, 264-272. https://doi.org/10.1016/j.compstruct.2014.02.010.
  63. Taati, E. and Fallah, F. (2019), "Exact solution for frequency response of sandwich microbeams with functionally graded cores", J. Vib. Control, 25(19-20), 2641-2655. https://doi.org/10.1177/1077546319864645.
  64. Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "An integral four-variable hyperbolic HSDT for the wave propagation investigation of a ceramic-metal FGM plate with various porosity distributions resting on a viscoelastic foundation", Wave. Rand. Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1942310.
  65. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  66. Vosoughi, A.R. (2014), "Thermal postbuckling analysis of functionally graded beams", J. Therm. Stress., 37(4), 532-544. https://doi.org/10.1080/01495739.2013.872462.
  67. Vosoughi, A.R. and Anjabin, N. (2017), "Dynamic moving load identification of laminated composite beams using a hybrid FE-TMDQ-GAs method", Inverse Prob. Sci. Eng., 25(11), 1639-1652. https://doi.org/10.1080/17415977.2016.1275613.
  68. Vosoughi, A.R., Anjabin, N. and Amiri, S.M. (2018), "Thermal post-buckling analysis of moderately thick nanobeams", Iran. J. Sci. Technol., Trans. Civil Eng., 42(1), 33-38. https://doi.org/10.1007/s40996-017-0084-x.
  69. Vosoughi, A.R., Malekzadeh, P. and Razi, H. (2013), "Response of moderately thick laminated composite plates on elastic foundation subjected to moving load", Compos. Struct., 97, 286-295. https://doi.org/10.1016/j.compstruct.2012.10.017.
  70. Vosoughi, A.R., Malekzadeh, P., Banan, M.R. and Banan, M.R. (2012), "Thermal buckling and postbuckling of laminated composite beams with temperature-dependent properties", Int. J. Nonlin. Mech., 47(3), 96-102. https://doi.org/10.1016/j.ijnonlinmec.2011.11.009.
  71. Wang, Y. and Wu, D. (2016), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronautica, 127, 171-181. https://doi.org/10.1016/j.actaastro.2016.05.030.
  72. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  73. Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023.
  74. Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
  75. Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), "Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method", Compos. Part B: Eng., 157, 219-238. https://doi.org/10.1016/j.compositesb.2018.08.087.