DOI QR코드

DOI QR Code

Peak Impact Force of Ship Bridge Collision Based on Neural Network Model

신경망 모델을 이용한 선박-교각 최대 충돌력 추정 연구

  • Wang, Jian (Department of Naval Architecture and Ocean Engineering, Kunsan National University) ;
  • Noh, Jackyou (Department of Naval Architecture and Ocean Engineering, Kunsan National University)
  • 왕지엔 (군산대학교 조선해양공학과) ;
  • 노재규 (군산대학교 조선해양공학과)
  • Received : 2022.01.12
  • Accepted : 2022.02.25
  • Published : 2022.02.28

Abstract

The collision between a ship and bridge across a waterway may result in extremely serious consequences that may endanger the safety of life and property. Therefore, factors affecting ship bridge collision must be investigated, and the impact force should be discussed based on various collision conditions. In this study, a finite element model of ship bridge collision is established, and the peak impact force of a ship bridge collision based on 50 operating conditions combined with three input parameters, i.e., ship loading condition, ship speed, and ship bridge collision angle, is calculated via numerical simulation. Using neural network models trained with the numerical simulation results, the prediction model of the peak impact force of ship bridge collision involving an extremely short calculation time on the order of milliseconds is established. The neural network models used in this study are the basic backpropagation neural network model and Elman neural network model, which can manage temporal information. The accuracy of the neural network models is verified using 10 test samples based on the operating conditions. Results of a verification test show that the Elman neural network model performs better than the backpropagation neural network model, with a mean relative error of 4.566% and relative errors of less than 5% in 8 among 10 test cases. The trained neural network can yield a reliable ship bridge collision force instantaneously only when the required parameters are specified and a nonlinear finite element solution process is not required. The proposed model can be used to predict whether a catastrophic collision will occur during ship navigation, and thus hence the safety of crew operating the ship.

선박과 교각이 충돌하면 생명과 안전에 큰 위협이 될 수 있다. 따라서 선박-교각 충돌력 영향 인자를 식별하고 다양한 충돌 조건에서의 충돌력에 대한 연구의 필요성이 있다. 본 논문에서는 선박-교각 충돌의 유한요소 모델을 설정하고, 수치 시뮬레이션을 통해 선적상태, 운항속도, 충돌 각도의 세 가지 입력조건을 조합하여 50가지 케이스에서의 선박-교각 최대 충돌력을 계산하였다. 계산된 유한요소해석 결과를 사용하여 신경망 추정 모델을 학습하고 최대 충돌력을 추정함으로써 빠른 시간에 최대 충돌력을 추정하는 프로세스를 제안하였다. 신경망 예측 모델은 가장 기초적인 역전파 신경망과 시간정보를 고려할 수 있는 순환신경망인 Elman 신경망 2가지 모델을 사용하였다. 10가지 케이스의 테스트 데이터로 시험한 결과 Elman 신경망을 사용했을 경우에 평균상대오차가 4.566%로 역전파 신경망보다 나은 최대 충돌력 추정이 가능함을 확인하였고 8가지 케이스에서 5%이하의 상대오차를 보여 주었다. 본 신경망을 이용한 최대 충돌력 추정법은 유한요소해석을 수행하지 않아도 되므로 계산 시간이 짧아 선박 항해 중 충돌을 회피할 수 없는 경우 피해를 최소화하는 의사결정의 기초 방법으로 사용할 수 있다.

Keywords

References

  1. Consolzaio, G. R. and D. R. Cowan(2003), Nonlinear analysis of barge crush behavior and its relationship to impact resistant bridge design, Computer&Structure, pp. 547-557.
  2. Cooper, S. B. and D. Dimaio(2018), Static load estimation using artificial neural network: Application on a wing rib, Advances in Engineering Software, pp. 113-125.
  3. Feng, Q. H. and H. B. Wu(2013), Method for ship-bridge collision force calculation based on energy, Journal of Wuhan University of Technology, Vol. 37, No. 5, pp. 943-946. https://doi.org/10.3963/j.issn.2095-3844.2013.05.011
  4. Hasnaoui, H., M. Krea, and D. Roizard(2017), Neural networks for the prediction of polymer permeability to gases, Journal of Membrane Science, pp. 541-549.
  5. He, Y., W. L. Jin, and A. H. Zhang(2008), Nonilnear collision simulation on dynamic interaction between ship-bridge, Journal of Zhejiang University, Vol. 42, No. 6, pp. 1065-1070. https://doi.org/10.3785/j.issn.1008-973X.2008.06.032
  6. Hu, Z. B., Y. H. Fu, W. S. Cai, and Y. Jin(2016), Numerical simulation of nonlinear dynamic behaviors of VLCC collision, Navigation of China, Vol. 39, No. 4, pp. 81-86.
  7. Leheta, H. W., A. M. Elhewy, and W. Mohamed(2014), Finite element simulation of barge impact into a rigid wall, Alexandria Engineering Journal, Vol. 53, No. 1, pp. 11-21. https://doi.org/10.1016/j.aej.2013.12.004
  8. Liu, J. C. and Y. N. Gu(2002), Response and damage of bridge pier during ship-bridge collision, Highway, pp. 33-41.
  9. Liu, J. C., Y. N. Gu, and Z. Q. Hu(2002), Simulation of the whole process of ship-bridge collision, China Ocean Engineering, Vol. 16, No. 3, pp. 368-382.
  10. Mao, Y. F., W. Q. Liu, D. Zhou, and Y. Zhuang(2015), Stiffness simplified model of bow in ship bridge collision, Journal of Nanjiang Tech University, Vol. 37, No. 5, pp. 67-72.
  11. Marcus, S., B. Franz, and M. Bernd(2018), Artificial neural networks and intelligent finite elements in non-linear structural mechanics, Thin-Walled Structures, pp. 102-106.
  12. Motora, S., M. Fujino, M. Sugiura, and M. Sugita(1971), Equivalent added mass of ships in collisions, Society of Naval Architects of Japan, pp. 128-138.
  13. Polanco, L. M., O. S. Hopperstad, and T. Borvok(2008), Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model, International Journal of Impact Engineering, Vol. 35, No. 5, pp. 290-303. https://doi.org/10.1016/j.ijimpeng.2007.03.001
  14. Rodrigo, M. S., C. F. Ramon, J. B. Fabricio, P. S. Adriano, F. Z. Ronaldo, F. Wellington, and D. Victor(2017), A System Based on Artificial Neural Networks for Automatic Classification of Hydro-generator Stator Windings Partial Discharges, Journal of Microwaves, Optoelectronics and Electromagnetic Applications, pp. 2179-1074.
  15. Sha, Y. Y. and H. Hao(2012), Nonlinear finite element analysis of barge collision with a single bridge pier, Engineering Structures, pp. 63-76. https://doi.org/10.1016/j.engstruct.2017.06.025
  16. Sheng, M. J. and P. H. Chen(2018), Estimation method for damage area after low-velocity impact of composite material based on neural network, Journal of Nanjing University of Aeronautics & Astronautics, pp. 30-35.
  17. Xiang, H. F., L. C. Fan, and J. J. Wang(2002), State of art of ship collision design for bridges and future research, Journal of Tongji University, Vol. 30, No. 4, pp. 386-392. https://doi.org/10.3321/j.issn:0253-374X.2002.04.002
  18. Zhang, J. B., X. Z. Li, and L. Xiao(2016), Difference of impact forces for two sorts of vessel-bridge collisions and bridge dynamic response analysis, Journal of Vibration and Shock, Vol. 35, No. 4, pp. 156-161. https://doi.org/10.1016/j.jsv.2016.07.001
  19. Zhao, N., J. J. Liu, and Z. J. Li(2015), Research of store ship broadside collision damaged environment, Journal of Ship Mechanics, Vol. 19, No. 8, pp. 950-957.