Acknowledgement
The first three authors of this paper were financially supported by the National Natural Science Foundation of China (Grant No. 52178329, 51578231 & 42176224), Guangdong Basic and Applied Basic Research Foundation (2021A1515010828) and Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology (2021B1212040003).
References
- Anastasopoulos, I. and Theofilou, M. (2016), "Hybrid foundation for offshore wind turbines: Environmental and seismic loading", Soil. Dyn. Earthq. Eng., 80, 192-209. https://doi.org/10.1016/j.soildyn.2015.10.015.
- API (American Petroleum Institute). (2014). ANSI/API recommended practice, 2GEO, 1st Ed., Part 4, 499 Washington, DC.
- Arshi, S. (2016), "Physical and Numerical Modelling of Hybrid Monopiled-Footing Foundation Systems", Ph.D. Dissertation; University of Brighton, Brighton, England.
- Bandyopadhyay, S., Sengupta, A. and Parulekar, Y.M. (2020), "Behavior of a combined piled raft foundation in a multi-layered soil subjected to vertical loading", Geomech. Eng., 21(4), 379-390. https://doi.org/10.12989/gae.2020.21.4.379.
- Chen, D., Gao, P., Huang, S.S., Li, C.S. and Yu, X.G. (2020), "Static and dynamic loading behavior of a hybrid foundation for offshore wind turbines", Mar. Struct., 71, 102727. https://doi.org/10.1016/j.marstruc.2020.102727.
- Chong, S.H., Shin, H.S. and Cho, G.C. (2019), "Numerical analysis of offshore monopile during repetitive lateral loading", Geomech. Eng., 19(1), 79-91. https://doi.org/10.12989/gae.2019.19.1.079.
- Dassault Systemes. Abaqus analysis user's manual. Simulia Corp 2016.
- DNV (Det Norske Veritas). (2019). Offshore soil mechanics and geotechnical engineering, DNV GL-RP-C212. Hovik, Norway: DNV.
- El-Marassi, M. (2011), "Investigation of Hybrid Monopile-footing Foundation Systems Subjected to Combined Loading", Ph.D. Dissertation, The University of Western Ontario, Ontario, Canada.
- Fatahi, B., Basack, S., Ryan, P., Zhou, W.H. and Khabbaz, H. (2014), "Performance of laterally loaded piles considering soil and interface parameters", Geomech. Eng., 7(5), 495-524. https://doi.org/10.12989/gae.2014.7.5.495.
- Feng, X., Randolph, M.F., Gourvenec, S. and Wallerand, R. (2014), "Design approach for rectangular mudmats under fully threedimensional loading", Geotechnique, 64(1), 51-63. https://doi.org/10.1680/geot.13.P.051.
- Gourvenec, S.M and Barnett, S. (2011). "Undrained failure envelope for skirted foundations under general loading", Geotechnique, 61(3), 263-270. https://doi.org/10.1680/geot.9.T.027.
- Gourvenec, S.M. and Mana, D. (2011), "Undrained vertical bearing capacity factors for shallow foundations", Geotechnique Lett., 1(4), 101-108. https://doi.org/10.1680/geolett.11.00026.
- Hossain, M.S., Hu, P., Cassidy, M.J., Menzies, D. and Wingate, A. (2019), "Measured and calculated spudcan penetration profiles for case histories in sand-over-clay", Appl. Ocean Res., 82, 447-457. https://doi.org/10.1016/j.apor.2018.10.027.
- Lehane, B.M., Pedram, B., Doherty, J.A. and Powrie, W. (2014), "Improved performance of monopiles when combined with footings for tower foundations in sand", J. Geotech. Geoenviron. Eng., 140(7), 04014027. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001109.
- Liu, F., Yi, JT., Cheng, P. and Yao, K. (2020), "Numerical simulation of set-up around shaft of XCC pile in clay", Geomech. Eng., 21(5), 489-501. https://doi.org/10.12989/gae.2020.21.5.489.
- Li, D.Y., Feng, L.Y. and Zhang, Y.K. (2014), "Model tests of modified suction caissons in marine sand under monotonic lateral combined loading", Appl. Ocean Res., 48, 137-147. https://doi.org/10.1016/j.apor.2014.08.005.
- Li, X.Y, Zeng, X.W. and Wang X.F. (2020), "Feasibility study of monopile-friction wheel-bucket hybrid foundation for offshore wind turbine", Ocean Eng., 204, 107276. https://doi.org/10.1016/j.oceaneng.2020.107276.
- Li, X., Hu, Y. and White, D. (2013), "A large deformation finite element analysis solution for modelling dense sand", In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, Presses des Ponts. (1), 2359-2362. http://eprints.soton.ac.uk/id/eprint/419746.
- Malhotra, S. (2011), Selection, design and construction of offshore wind turbine foundations. In Wind turbines, ed. I. Al-Bahadly. Rijeka, Croatia: InTech.
- Meyerhof, G.G. and Hanna, A.M (1978), "Ultimate bearing capacity of foundations on layered soils under inclined load", Can. Geotech. J., 15(4), 565-572. https://doi.org/10.1139/t78-060.
- Pedram, B. (2018), "Behaviour of Hybrid Piled Footing Structures in Sands", Geotech Geol. Eng., 36(4), 2273-2292. https://doi.org/10.1007/s10706-018-0461-7.
- Raj, D., Singh, Y. and Kaynia, A.M. (2019), "Behavior and critical failure modes of strip foundations on slopes under seismic and structural loading", Int. J. Geomech., 19(6), 04019047. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001427.
- Stone, K.J., Arshi, H.S. and Zdravkovi, L. (2018), "Use of a bearing plate to enhance the lateral capacity of monopiles in sand", J. Geotech. Geoenviron. Eng., 144(8), 04018051. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001913.
- Trojnar, K. (2019), "Multi scale studies of the new hybrid foundations for offshore wind turbines", Ocean Eng., 192, 106506. https://doi.org/10.1016/j.oceaneng.2019.106506.
- Wang, L.Z., Wang, H., Zhu, B. and Hong, Y. (2018b), "Comparison of monotonic and cyclic lateral response between monopod and tripod bucket foundations in medium dense sand", Ocean Eng., 155, 88-105. https://doi.org/10.1016/j.oceaneng.2017.12.006.
- Wang, X.F., Zeng, X.W., Yang, X. and Li, J.L. (2018a), "Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling", Appl. Energy, 209(1), 127-139. https://doi.org/10.1016/j.apenergy.2017.10.107.
- Xu, C.J., Ding, H.B., Luo, W.J.,Tong, L., Chen, Q.S. and Deng, J.L.(2020) "Experimental and numerical study on performance of long-short combined retaining piles", Geomech. Eng., 20(3), 255-265. https://doi.org/10.12989/gae.2020.20.3.255.
- Yang, X., Wang, X.F. and Zeng X.W. (2017), "Numerical Simulation of the Lateral Loading Capacity of a Bucket Foundation", Geotechnical Special Publication, 279, 112-121.
- Yang, X., Zeng, X.W., Wang, X.F. and Yu, H. (2018), "Performance of monopile-friction wheel foundations under lateral loading for offshore wind turbines", Appl. Ocean Res., 78, 14-24. https://doi.org/10.1016/j.apor.2018.06.005.
- Zhou, M., Hossain, M.S., Hu, Y.X. and Liu, H. (2016), "Scale issues and interpretation of ball penetration in stratified deposits in centrifuge testing", J. Geotech. Geoenviron. Eng., 142(5) 04015103. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001442.
- Zheng, G., Zhao, J.P., Zhou, H.Z. and Zhang, T.Q. (2018), "Ultimate Bearing Capacity of Strip Footings on Sand Overlying Clay Under Inclined Loading", Comput. Geotech., 106, 266-273. https://doi.org/10.1016/j.compgeo.2018.11.003.
- Zou, X.J., Hu, Y.X., Hossain, M. and Zhou, M. (2018), "Capacity of skirted foundations in sand-over-clay under combined V-H-M loading", Ocean Eng., 159(1), 201-218. https://doi.org/10.1016/j.oceaneng.2018.04.007.