과제정보
본 원고는 농촌진흥청 시험연구사업"(PJ01606001) 기온 및 이산화탄소 변화에 따른 복숭아혹진딧물과 기생벌 상호작용 영향평가"의 지원에 의해 수행되었다.
참고문헌
- Ahn, J.J., Choi, K.S., Koh, S., 2019a. Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae). Appl. Entomol. Zool. 54, 63-74. https://doi.org/10.1007/s13355-018-0593-5
- Ahn, J.J., Choi, K.S., Koh, S., 2019b. Using viable eggs to determine oviposition models and life table analysis of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae). Korean J. Appl. Entomol. 58, 111-120. https://doi.org/10.5656/KSAE.2019.04.1.063
- Bradley, T.J., Brisco, A.D., Brady, S.G., Contreras, H.L., Danforth, B.N., Dudley, R., Grimali, D., Harrison, J.F., Kaiser, J.A., Merlin, C., Reppert, S.M., VandenBrooks, J.M., Yanoviak, S.P., 2009. Episodes in insect evolution. Integr. Comp. Biol. 49, 590-606. https://doi.org/10.1093/icb/icp043
- Briere, J.F., Pracros, P., Le Roux, L.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29. https://doi.org/10.1093/ee/28.1.22
- Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Mackauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438. https://doi.org/10.2307/2402197
- Dixon, A.F.G., Honek, A., Keil, P., Kotela, M.A.A., Sizling, A.L., Jarosik, V., 2009. Relationship between the minimum and maximum temperature thresholds for development in insects. Funct. Ecol. 23, 257-264. https://doi.org/10.1111/j.1365-2435.2008.01489.x
- Hodgson, J.A., Thomas, C.D., Oliver, T.H., Anderson, B.J., Brereton, T.M., 2011. Predicting insect phenology across space and time. Glob. Change Biol. 17, 1289-1300. https://doi.org/10.1111/j.1365-2486.2010.02308.x
- Ikemoto, T., 2003. Possible existence of a common temperature and a common duration of development among members of a taxonomic group of arthropods that underwent speciational adaptation to temperature. Appl. Entomol. Zool. 38, 487-492. https://doi.org/10.1303/aez.2003.487
- Ikemoto, T., 2005. Intrinsic optimum temperature for development of insects and mites. Environ. Entomol. 34, 1377-1387. https://doi.org/10.1603/0046-225X-34.6.1377
- Ikemoto, T., Kurahashi, I, Shi, P-J., 2013. Confidence interval of intrinsic optimum temperature estimated using the thermodynamic SSI model. Insect Sci. 20, 420-428. https://doi.org/10.1111/j.1744-7917.2012.01525.x
- Jarosik, V., Honek, A., Dixon, A.F.G., 2002. Developmental rate isomorphy in insects and mites. Am. Nat. 160, 497-510. https://doi.org/10.1086/342077
- Jarosik, V., Honek, A., Magarey, R.D., Skuhrovec, J., 2011. Developmental database for phenology models: related insect and mite species have similar thermal requirements. J. Econ. Entomol. 104, 1870-1876. https://doi.org/10.1603/EC11247
- Kim, D-S., Ahn, J.J., Lee, J-H., 2017. A review for non-linear models describing temperature-dependent development of insect populations: characteristics and developmental process of models. Korean J. Appl. Entomol. 56, 1-18. https://doi.org/10.5656/KSAE.2016.11.0.061
- Kim, D-S., Lee, J-H., 2003. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecol. Model. 162, 145-153. https://doi.org/10.1016/S0304-3800(02)00402-7
- Kingsolver, J.G., Buckley, L.B., 2020. Ontogenetic variation in thermal sensitivity shapes insect ecological responses to climate change. Curr. Opin. Insect Sci. 41, 17-24. https://doi.org/10.1016/j.cois.2020.05.005
- Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
- Logan, J.A., Wollkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140. https://doi.org/10.1093/ee/5.6.1133
- Nietschke, B.S., Magarey, R.D., Borschert, D.M., Calvin, D.D., Jones, E., 2007. A development database to support insect phenology models. Crop Prot. 26, 1444-1448. https://doi.org/10.1016/j.cropro.2006.12.006
- Price, P.W., 1997. Insect ecology. 3rd edition. John Wiley & Sons, Inc. New York.
- Quinn, B.K., 2021. Performance of the SSI development function compared with 33 other functions applied to 79 arthropod species' datasets. J. Therm. Biol. 102, 103-112. https://doi.org/10.1016/j.jtherbio.2021.103112
- Rebaudo, F., Rabhi, V-B., 2018. Modeling temperature-dependent development rate and phenology in insects: review of major developments, challenges, and future directions. Entomol. Exp. Appl. 166, 607-617. https://doi.org/10.1111/eea.12693
- Regnier, B., Legrand, J., Rebaudo, F., 2021. Modeling temperature-dependent development rate in insects and implications of experimental design. Environ. Entomol. In pressing.
- Roff, D.A., 1992. The evolution of life histories: theory and analysis. Chapman & Hall. New York.
- SAS Institute, 1999. SAS System for Window, Release 8.02. SAS Institute, Cary, NC.
- Schoolfield, R.M., Sharpe, P.J.H., Mugnuson, C.E., 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theo. Biol. 88, 715-731.
- Scranton, K., Amarasekare, P., 2017. Predicting phenological shifts in a changing climate. P. Natl. Acad. Sci. USA 114, 13212-13217. https://doi.org/10.1073/pnas.1711221114
- Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm development. J. Theo. Bio. 64, 649-670. https://doi.org/10.1016/0022-5193(77)90265-X
- Shi, P-J., Reddy, G.V.P., Chen, L., Ge, F., 2017. Comparison of thermal performance equations in describing temperature-dependent developmental rates of insects: (II) two thermodynamic models. Ann. Entomol. Soc. Am. 110, 113-120. https://doi.org/10.1093/aesa/saw067
- Stejskal, V., Vendl, T., Li, Z., Aulicky, R., 2019. Minimal thermal requirements for development and activity of stored product and food industry pests (Acari, Coleoptera, Lepidoptera, Psocoptera, Diptera and Blattodea): a review. Insects 10, 149. https://doi.org/10.3390/insects10050149
- Taylor, F., 1981. Ecology and evolutionary of physiological time in insects. Am. Nat. 117, 1-23. https://doi.org/10.1086/283683
- Whitman, D.W., Ananthakrishnan, T.N., 2009. Phenotypic plasticity of insects: mechanisms and consequences. Science publishers. Enfield.