DOI QR코드

DOI QR Code

곤충과 응애의 분류군별 공통고유최적온도, 발육최적온도 및 산란최적온도의 분포 양상

Distribution Patterns of Intrinsic Optimal Temperature, Optimal Development Temperature and Optimal Fecundity Temperature by Classification Group of Insects and Mites

  • 안정준 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 최경산 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소)
  • Ahn, Jeong Joon (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA) ;
  • Choi, Kyung San (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA)
  • 투고 : 2021.12.21
  • 심사 : 2022.01.24
  • 발행 : 2022.03.01

초록

곤충은 주변환경에 적응하며 발육과 번식을 통해 진화하여 왔다. 온도발육모형을 이용하여 곤충과 응애 분류군별 공통고유최적온도, 발육최적온도, 산란최적온도를 산출하기 위해 112편의 논문에서 응애류 14종, 딱정벌레목 8종, 파리목 5종, 노린재목 31종, 벌목 7종, 나비목 18종, 메뚜기목 1목, 다듬이벌레목 5종, 총채벌레목 5종의 온도발육과 산란자료를 분석하였다. 분석을 통하여 총채벌레목을 제외하고 공통고유최적온도는 발육최적온도보다는 산란최적온도와 차이가 적었다. 본 종설을 통해 공통고유최적온도는 발육최적온도보다는 산란최적온도와 밀접한 관계가 있을 가능성이 높음을 제안하였다.

Insects have evolved successfully by adapting to their environments through development and reproduction. Temperature-dependent models have been used to calculate the intrinsic optimal, optimal development, and optimal fecundity temperatures of insects and mites; for this study, we reviewed 112 works that focused on these parameters. The insects and mites investigated in this study include 14 Acari, 8 Coleoptera, 5 Diptera, 31 Hemiptera, 7 Hymenoptera, 18 Lepidoptera, 1 Orthoptera, 5 Psocoptera, and 5 Thysanoptera species. The results of this study showed that the interval distance between the intrinsic optimal and optimal fecundity temperatures was smaller than that between the intrinsic optimal and optimal development temperatures of the all insects and mites investigated except for those in the order Thysanoptera. We found that there is a close relationship between the intrinsic optimal and optimal fecundity temperatures.

키워드

과제정보

본 원고는 농촌진흥청 시험연구사업"(PJ01606001) 기온 및 이산화탄소 변화에 따른 복숭아혹진딧물과 기생벌 상호작용 영향평가"의 지원에 의해 수행되었다.

참고문헌

  1. Ahn, J.J., Choi, K.S., Koh, S., 2019a. Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae). Appl. Entomol. Zool. 54, 63-74. https://doi.org/10.1007/s13355-018-0593-5
  2. Ahn, J.J., Choi, K.S., Koh, S., 2019b. Using viable eggs to determine oviposition models and life table analysis of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae). Korean J. Appl. Entomol. 58, 111-120. https://doi.org/10.5656/KSAE.2019.04.1.063
  3. Bradley, T.J., Brisco, A.D., Brady, S.G., Contreras, H.L., Danforth, B.N., Dudley, R., Grimali, D., Harrison, J.F., Kaiser, J.A., Merlin, C., Reppert, S.M., VandenBrooks, J.M., Yanoviak, S.P., 2009. Episodes in insect evolution. Integr. Comp. Biol. 49, 590-606. https://doi.org/10.1093/icb/icp043
  4. Briere, J.F., Pracros, P., Le Roux, L.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29. https://doi.org/10.1093/ee/28.1.22
  5. Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Mackauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438. https://doi.org/10.2307/2402197
  6. Dixon, A.F.G., Honek, A., Keil, P., Kotela, M.A.A., Sizling, A.L., Jarosik, V., 2009. Relationship between the minimum and maximum temperature thresholds for development in insects. Funct. Ecol. 23, 257-264. https://doi.org/10.1111/j.1365-2435.2008.01489.x
  7. Hodgson, J.A., Thomas, C.D., Oliver, T.H., Anderson, B.J., Brereton, T.M., 2011. Predicting insect phenology across space and time. Glob. Change Biol. 17, 1289-1300. https://doi.org/10.1111/j.1365-2486.2010.02308.x
  8. Ikemoto, T., 2003. Possible existence of a common temperature and a common duration of development among members of a taxonomic group of arthropods that underwent speciational adaptation to temperature. Appl. Entomol. Zool. 38, 487-492. https://doi.org/10.1303/aez.2003.487
  9. Ikemoto, T., 2005. Intrinsic optimum temperature for development of insects and mites. Environ. Entomol. 34, 1377-1387. https://doi.org/10.1603/0046-225X-34.6.1377
  10. Ikemoto, T., Kurahashi, I, Shi, P-J., 2013. Confidence interval of intrinsic optimum temperature estimated using the thermodynamic SSI model. Insect Sci. 20, 420-428. https://doi.org/10.1111/j.1744-7917.2012.01525.x
  11. Jarosik, V., Honek, A., Dixon, A.F.G., 2002. Developmental rate isomorphy in insects and mites. Am. Nat. 160, 497-510. https://doi.org/10.1086/342077
  12. Jarosik, V., Honek, A., Magarey, R.D., Skuhrovec, J., 2011. Developmental database for phenology models: related insect and mite species have similar thermal requirements. J. Econ. Entomol. 104, 1870-1876. https://doi.org/10.1603/EC11247
  13. Kim, D-S., Ahn, J.J., Lee, J-H., 2017. A review for non-linear models describing temperature-dependent development of insect populations: characteristics and developmental process of models. Korean J. Appl. Entomol. 56, 1-18. https://doi.org/10.5656/KSAE.2016.11.0.061
  14. Kim, D-S., Lee, J-H., 2003. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecol. Model. 162, 145-153. https://doi.org/10.1016/S0304-3800(02)00402-7
  15. Kingsolver, J.G., Buckley, L.B., 2020. Ontogenetic variation in thermal sensitivity shapes insect ecological responses to climate change. Curr. Opin. Insect Sci. 41, 17-24. https://doi.org/10.1016/j.cois.2020.05.005
  16. Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
  17. Logan, J.A., Wollkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140. https://doi.org/10.1093/ee/5.6.1133
  18. Nietschke, B.S., Magarey, R.D., Borschert, D.M., Calvin, D.D., Jones, E., 2007. A development database to support insect phenology models. Crop Prot. 26, 1444-1448. https://doi.org/10.1016/j.cropro.2006.12.006
  19. Price, P.W., 1997. Insect ecology. 3rd edition. John Wiley & Sons, Inc. New York.
  20. Quinn, B.K., 2021. Performance of the SSI development function compared with 33 other functions applied to 79 arthropod species' datasets. J. Therm. Biol. 102, 103-112. https://doi.org/10.1016/j.jtherbio.2021.103112
  21. Rebaudo, F., Rabhi, V-B., 2018. Modeling temperature-dependent development rate and phenology in insects: review of major developments, challenges, and future directions. Entomol. Exp. Appl. 166, 607-617. https://doi.org/10.1111/eea.12693
  22. Regnier, B., Legrand, J., Rebaudo, F., 2021. Modeling temperature-dependent development rate in insects and implications of experimental design. Environ. Entomol. In pressing.
  23. Roff, D.A., 1992. The evolution of life histories: theory and analysis. Chapman & Hall. New York.
  24. SAS Institute, 1999. SAS System for Window, Release 8.02. SAS Institute, Cary, NC.
  25. Schoolfield, R.M., Sharpe, P.J.H., Mugnuson, C.E., 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theo. Biol. 88, 715-731.
  26. Scranton, K., Amarasekare, P., 2017. Predicting phenological shifts in a changing climate. P. Natl. Acad. Sci. USA 114, 13212-13217. https://doi.org/10.1073/pnas.1711221114
  27. Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm development. J. Theo. Bio. 64, 649-670. https://doi.org/10.1016/0022-5193(77)90265-X
  28. Shi, P-J., Reddy, G.V.P., Chen, L., Ge, F., 2017. Comparison of thermal performance equations in describing temperature-dependent developmental rates of insects: (II) two thermodynamic models. Ann. Entomol. Soc. Am. 110, 113-120. https://doi.org/10.1093/aesa/saw067
  29. Stejskal, V., Vendl, T., Li, Z., Aulicky, R., 2019. Minimal thermal requirements for development and activity of stored product and food industry pests (Acari, Coleoptera, Lepidoptera, Psocoptera, Diptera and Blattodea): a review. Insects 10, 149. https://doi.org/10.3390/insects10050149
  30. Taylor, F., 1981. Ecology and evolutionary of physiological time in insects. Am. Nat. 117, 1-23. https://doi.org/10.1086/283683
  31. Whitman, D.W., Ananthakrishnan, T.N., 2009. Phenotypic plasticity of insects: mechanisms and consequences. Science publishers. Enfield.