DOI QR코드

DOI QR Code

Osmoregulatory Physiology in Ixodidae Ticks: An Alternative Target for Management of Tick

진드기의 수분조절 생리와 진드기 방제전략

  • Received : 2022.01.10
  • Accepted : 2022.02.08
  • Published : 2022.03.01

Abstract

Ticks are the arthropod vector capable of transmitting diverse pathogens, which include bacteria, viruses, protozoan and fungi. Ticks are able to survive under stressful environmental conditions. One of evolutionary outcomes of these obligatory hematophagous arthropods is the survival for extended periods of time without a blood meal during off-host periods. Water conservation biology and heat tolerance have allowed ticks to thrive even under high temperatures and low relative humidity, thus they have become highly successful arthropods as they are distributed globally. Tick osmoregulatory physiology is a complex mechanism, which involves multiple osmoregulatory organs (salivary glands, Malpighian tubules, hindgut and synganglion) for the acquisition and excretion of water and ions. Blood feeding and water vapor uptake have been early reported as the primary passages for ixodid tick to acquire water. Recently, we have learned that ticks can actively drink environmental water allowing hydration. The acquired water can be traced to the salivary glands (type I acini) and the midgut diverticula. This opens new avenues for tick management through the delivery of toxic agents into their drinking water, in addition to an alternative strategy for the study of tick physiology. Here we address the osmoregulatory physiology in the ixodid ticks as a potential target physiological mechanism for tick control. We discuss the implications of water drinking behavior for tick control through the delivery of toxic agents and discuss the dermal excretion physiology as an additional pathway to induce tick dehydration and tick death.

진드기는 박테리아, 바이러스, 원생동물 및 균류를 포함한 다양한 병원체를 전달할 수 있는 감염병매개체이다. 진드기는 불리한 환경조건에서도 생존할 수 있는 능력이 있으며, 흡혈이 필수적인 절지동물의 진화적 산물로써 비흡혈 기간이 장기간 지속되는 경우에도 생존이 가능하다. 특히, 높은 온도와 낮은 습도 환경에서도 견딜 수 있는 수분 조절 메커니즘과 내열성의 생리적 특징은 진드기가 전 세계적으로 분포하도록 한 중요한 요인이다. 진드기의 침샘, 말피기관, 후장 그리고 뇌를 포함하는 여러 기관이 관여하는 물과 이온의 획득 및 배출은 복합적인 메커니즘에 의해 조절된다. 진드기가 수분을 확보하는 주요 경로는 흡혈과정 또는 공기 중 수증기를 직접 포집하는 방식이며, 이와 더불어 진드기가 자연조건에서 맺힌 물방울을 직접 마시며 수분을 보충한다는 것이 최근 본 연구진의 연구를 통해 밝혀졌다. 물방울에서 획득된 수분은 진드기 침샘의 포도상 부위(유형 I) 또는 중장을 통해 체내로 흡수된다는 것이 형광물질 추적을 통해 확인되었다. 이 연구 결과는 진드기 방제 및 병원체 전파 억제를 위한 전략 개발에 새로운 방향을 제시하였다. 본 종설에서는 진드기 방제를 위한 잠재적 표적인 진드기의 수분조절 및 표피 배설의 생리적 메커니즘을 종합적으로 다룬다.

Keywords

Acknowledgement

DK was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2019R1G1A1100559) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A3055954). YP was supported by NIH grants NIH-NIAID R21 AI135457 and AI163423, 1S10OD026726 and USDA-NIFA, GRANT-13066347. Contribution number 21-xxx-J from the Kansas Agricultural Experiment Station.

References

  1. Abbas, R.Z., Zaman, M.A., Colwell, D.D., Gilleard, J., Iqbal, Z., 2014. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 203, 6-20. https://doi.org/10.1016/j.vetpar.2014.03.006
  2. Albers, M.A., Bradley, T.J., 2004. Osmotic regulation in adult Drosophila melanogaster during dehydration and rehydration. J. Exp. Biol. 207, 2313-2321 https://doi.org/10.1242/jeb.01024
  3. Benoit, J.B., Denlinger, D.L., 2010. Meeting the challenges of onhost and off-host water balance in blood-feeding arthropods. J. Insect. Physiol. 56, 1366-1376. https://doi.org/10.1016/j.jinsphys.2010.02.014
  4. Benoit, J.B., Lazzari, C.R., Denlinger, D.L., Lahondere, C., 2019. Thermoprotective adaptations are critical for arthropods feeding on warm-blooded hosts. Curr. Opin. Insect. Sci. 34, 7-11. https://doi.org/10.1016/j.cois.2019.02.003
  5. Berridge, M.J., 1970. Osmoregulation in terrestrial arthropods, in: Flokin, M. (Ed.), Chemical zoology V5: Arthropoda Part A, Part 1. Academic Press, New York, pp. 287-316.
  6. Beyenbach, K.W., 2003. Transport mechanisms of diuresis in Malpighian tubules of insects. J. Exp. Biol. 206, 3845-3856. https://doi.org/10.1242/jeb.00639
  7. CDC, 2018. Tickborne diseases in the United States: A reference manual for healthcare providers, 5 ed, https://www.cdc.gov/ticks/tickbornediseases/TickborneDiseases-P.pdf (accessed on 20 December, 2020).
  8. Chen, A., Holmes Sp Fau - Pietrantonio, P.V., Pietrantonio, P.V., 2004. Molecular cloning and functional expression of a serotonin receptor from the Southern cattle tick, Boophilus microplus (Acari: Ixodidae). Insect Mol Biol. 13, 45-54. https://doi.org/10.1111/j.1365-2583.2004.00457.x
  9. Coast, G.M., 2009. Neuroendocrine control of ionic homeostasis in blood-sucking insects. J. Exp. Biol. 212, 378-386. https://doi.org/10.1242/jeb.024109
  10. Coles, T.B., Dryden, M.W., 2014. Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasites & Vectors 7, 8. https://doi.org/10.1186/1756-3305-7-8
  11. Crompton, A.W., Taylor, C.R., Jagger, J.A., 1978. Evolution of homeothermy in mammals. Nature 272, 333-336. https://doi.org/10.1038/272333a0
  12. Dantas-Torres, F., Chomel, B.B., Otranto, D., 2012. Ticks and tickborne diseases: a one health perspective. Trends Parasitol. 28, 437-446. https://doi.org/10.1016/j.pt.2012.07.003
  13. De la Fuente, J., Estrada-Pena, A., Venzal, J.M., Kocan, K.M., Sonenshine, D.E., 2008. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13, 6938-6946.
  14. Dipeolu, O.O., Ogunji, F.O., 1980. Laboratory studies on factors influencing the oviposition and eclosion patterns of Amblyomma vagieratum (Fabricius, 1794) females. Folia Parasitol. 27, 257-264.
  15. Freda, T.J., Needham, G.R., 1984. Water exchange kinetics of the long star tick Amblyomma americanum, in: Griffiths, D.A., Bowman, C.E. (Eds.) Acarology Vol.6, Horwood, Chichester, pp. 358-364.
  16. Guglielmone, A.A., Robbins, R.G., Apanaskevich, D.A., Petney, T.N., Estrada-Pena, A., Horak, I.G., Shao, R., Barker, S.C., 2010. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: a list of valid species names. Zootaxa 2528, 1-28. https://doi.org/10.11646/zootaxa.2528.1.1
  17. Hackman, R.H., Filshie, B.K. 1982. The tick cuticle, Physiology of Ticks (Vol 1.). Pergamon Press, UK, pp. 1-42.
  18. Hamdy, B.H., Sidrak, W., 1982. Guanine biosynthesis in the Ticks (Acari) Dermacentor Andersoni (Ixodidae) and Argas (Persicargas) Arboreus (Argasidae): Fate of Labelled Guanine Precursors 1, 2. J. Med. Entomol. Suppl. 19, 569-572. https://doi.org/10.1093/jmedent/19.5.569
  19. Hsu, M.H., and Sauer, J. R., 1974. Sodium, Potassium, Chloride and water balance in the feeding lone star tick, Amblyomma americanum (Linneaus) (Acarina: Ixodidae). J. Kans. Entomol. Soc. 47, 536-537.
  20. Jongejan, F., Uilenberg, G., 2004. The global importance of ticks. Parasitology 129 Suppl, S3-14. https://doi.org/10.1017/S0031182004005967
  21. Kahl, O., Alidousti, I., 1997. Bodies of liquid water as a source of water gain for Ixodes ricinus ticks (Acari: Ixodidae). Exp. Appl. Acarol. 21, 731-746. https://doi.org/10.1023/A:1018469021161
  22. Kaufman, W.R., Phillips, J.E., 1973. Ion and water balance in the Ixodid tick Dermacentor Andersoni. I. Routes of Ion and Water Excretion. J. Exp. Biol. 58, 523-536. https://doi.org/10.1242/jeb.58.2.523
  23. Kim, D., Maldonado-Ruiz, P., Zurek, L., Park, Y., 2017. Water absorption through salivary gland type I acini in the blacklegged tick, Ixodes scapularis. PeerJ 5, e3984. https://doi.org/10.7717/peerj.3984
  24. Kim, D., Simo, L., Park, Y., 2014. Orchestration of salivary secretion mediated by two different dopamine receptors in the blacklegged tick Ixodes scapularis. J. Exp. Biol. 217, 3656-3663. https://doi.org/10.1242/jeb.109462
  25. Kim, D., Simo, L., Vancova, M., Urban, J., Park, Y., 2019. Neural and endocrine regulation of osmoregulatory organs in tick: Recent discoveries and implications. Gen. Comp. Endocrinol. 278, 42-49. https://doi.org/10.1016/j.ygcen.2018.08.004
  26. Kim, D., Urban, J., Boyle, D.L., Park, Y., 2016. Multiple functions of Na/K-ATPase in dopamine-induced salivation of the Blacklegged tick, Ixodes scapularis. Sci. Rep. 6, 21047. https://doi.org/10.1038/srep21047
  27. Knulle, W., Devine, T.L., 1972. Evidence for active and passive components of sorption of atmospheric water vapour by larvae of the tick Dermacentor variabilis. J. Insect. Physiol. 18, 1653-1664. https://doi.org/10.1016/0022-1910(72)90095-9
  28. Lahondere, C., Insausti, T.C., Paim, R.M.M., Luan, X., Belev, G., Pereira, M.H., Ianowski, J.P., Lazzari, C.R., 2017. Countercurrent heat exchange and thermoregulation during blood-feeding in kissing bugs. eLife 6, e26107. https://doi.org/10.7554/elife.26107
  29. Lahondere, C., Lazzari, C.R., 2012. Mosquitoes cool down during blood feeding to avoid overheating. Curr. Biol. 22, 40-45. https://doi.org/10.1016/j.cub.2011.11.029
  30. Lees, A.D., 1946. The water balance in Ixodes ricinus L. and certain other species of ticks. Parasitology 37, 1-20. https://doi.org/10.1017/S0031182000013093
  31. Lees, A.D., 1948. Passive and active water exchange through the cuticle of ticks. Discuss. Faraday Soc. 3, 187-192. https://doi.org/10.1039/DF9480300187
  32. Londt, J.G., Whitehead, G.B., 1972. Ecological studies of larval ticks in South Africa (Acarina: Ixodidae). Parasitology 65, 469-490. https://doi.org/10.1017/S0031182000044097
  33. Maddrell, S., O'Donnell, M., 1992. Insect Malpighian tubules: V-ATPase action in ion and fluid transport. J. Exp. Biol. 172, 417-429. https://doi.org/10.1242/jeb.172.1.417
  34. Maldonado-Ruiz, L.P., Park, Y., Zurek, L., 2020. Liquid water intake of the lone star tick, Amblyomma americanum: Implications for tick survival and management, Scientific Reports. p. 6000.
  35. Meyer-Konig, A., Zahler, M., Gothe, R., 2001. Studies on survival and water balance of unfed adult Dermacentor marginatus and D. reticulatus ticks (Acari: Ixodidae). Exp. Appl. Acarol. 25, 993-1004. https://doi.org/10.1023/A:1020671700806
  36. Mullen, G.R., Durden, L.A., 2002. Ticks (Ixodida), medical and veterinary entomology. Academic Press, Amsterdam, pp. 517-558.
  37. Needham, G.R., Teel, P.D., 1986. Water balance by ticks between bloodmeals, in: Sauer, J.R., Hair, J.A., (Eds.), Morphology, physiology and behavioral biology of ticks. Ellis Horwood Limited, Chinchester, England, pp. 100-151.
  38. Norval, R.A., 1977. Studies on the ecology of the tick Amblyomma hebraeum Koch in the eastern Cape province of South Africa. II. Survival and development. J. Parasitol. 63, 740-747. https://doi.org/10.2307/3279586
  39. Nuttall, P.A., 2019a. Tick saliva and its role in pathogen transmission. Wien. Klin. Wochenschr. 2019, 1-12.
  40. Nuttall, P.A., 2019b. Wonders of tick saliva. Ticks Tick Borne Dis. 10, 470-481. https://doi.org/10.1016/j.ttbdis.2018.11.005
  41. Orchard, I., Leyria, J., Al-Dailami, A., Lange, A.B., 2021. Fluid secretion by malpighian tubules of rhodnius prolixus: Neuroendocrine control with new insights from a transcriptome analysis. Front. Endocrinol. 12, 772487.
  42. WHO, 2014. A global brief on vector-borne diseases. Tech. Rep.
  43. Pant, R., 1988. Nitrogen excretion in insects. Proc. Indian Acad. Sci. (Anim. Sci). 97, 379-415. https://doi.org/10.1007/BF03179946
  44. Pavis, C., Mauleon, H.,Barre, N., Maibeche, M., 1994. Dermal gland secretions of tropical bont tick,Amblyomma variegatum (Acarina: Ixodidae): Biological activity on predators and pathogens. J. Chem. Ecol. 20, 1495-1503. https://doi.org/10.1007/BF02059875
  45. Perner, J., Kropackov a, S., Kopacek, P., Ribeiro J.M.C., 2018. Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PLoS. Negl. Trop. Dis. 12, 1-17.
  46. Rudolph, D., Knulle, W., 1974. Site and mechanism of water vapour uptake from the atmosphere in ixodid ticks. Nature 249, 84-85. https://doi.org/10.1038/249084a0
  47. Sauer, J.R., Essenberg, R.C., Bowman, A.S., 2000. Salivary glands in ixodid ticks: control and mechanism of secretion. J. Insect. Physiol. 46, 1069-1078. https://doi.org/10.1016/S0022-1910(99)00210-3
  48. Sauer, J.R., Hair, J.A., 1971. Water balance in the lone star tick (Acarina: Ixodidae): the effects of relative humidity and temperature on weight changes and total water content. J. Med. Entomol. 8, 479-485. https://doi.org/10.1093/jmedent/8.5.479
  49. Simo, L., Koci J., Park, Y., 2014. Invertebrate specific D1-like dopamine receptor in control of salivary glands in the blacklegged tick Ixodes scapularis. J. Comp. Neurol. 522, 2038-2052 https://doi.org/10.1002/cne.23515
  50. Simo, L., Koci, J., Zitnan, D., Park, Y., 2011. Evidence for D1 dopamine receptor activation by a paracrine signal of dopamine in tick salivary glands. PLoS ONE 6, e16158. https://doi.org/10.1371/journal.pone.0016158
  51. Simo, L., Park, Y., 2014. Neuropeptidergic control of the hindgut in the black-legged tick Ixodes scapularis. Int. J. Parasitol. 44, 819-826. https://doi.org/10.1016/j.ijpara.2014.06.007
  52. Sonenshine, D.E., 1991a. Life cycles of ticks, in: Sonenshine, D.E., Roe, R.M. (Eds.), Biology of ticks, New York, pp. 51-66.
  53. Sonenshine, D.E., 1991b. Water balance in non-feeding ticks, in: Sonenshine, R. (Ed.), In Biology of Ticks, New York, pp. 398-412.
  54. Sonenshine, D.E., 2013. Excretion and water balance: hindgut, malpighian tubules and coxal glands, in: Sonenshine, D.E., Roe, R.M. (Eds.), Biology of ticks. Oxford University Press, New York, pp. 2016-2218.
  55. Sonenshine, D.E., Roe, R.M., 2013a. Biology of Ticks Volume 1. Oxford University Press, Incorporated, Cary, United States.
  56. Sonenshine, D.E., Roe, R.M., 2013b. Biology of Ticks Volume 2. Oxford University Press, Incorporated, Cary, United States.
  57. Splisteser, H., Tyron, U., 1986. Untersuchungen zu faunistischen besonderheiten und zur aktivitat von Dermacentor nuttalli in der Mongolischen Volksrepublik. Monatshefte fur Veterinarmedizin 414, 126-128.
  58. Stobbart, R.H., 1977. The control of the diuresis following a blood meal in females of the yellow fever mosquito Aedes aegypti (L). J. Exp. Biol. 69, 53-85. https://doi.org/10.1242/jeb.69.1.53
  59. Terrien, J., Perret, M., Aujard, F., 2011. Behavioral thermoregulation in mammals: a review. Front. Biosci. 16, 1428-1444. https://doi.org/10.2741/3797
  60. Thiemann, T., Fielden, L.J., Kelrick, M.I., 2003. Water uptake in the cat flea Ctenocephalides felis (Pulicidae: Siphonaptera). J. Insect. Physiol. 49, 1085-1092. https://doi.org/10.1016/S0022-1910(03)00153-7
  61. Valenzuela, J.G., Francischetti, I.M.B., Pham, V.M., Garfield, M.K., Mather, T.N., Ribeiro, J.M.C., 2002. Exploring the sialome of the tick Ixodes scapularis. J. Exp. Biol. 205, 2843-2864. https://doi.org/10.1242/jeb.205.18.2843
  62. Walker, A.R., Fletcher, J.D., Gill, H.S., 1985. Structural and histochemical changes in the salivary glands of Rhipicephalus appendiculatus during feeding. Int. J. Parasitol. 15, 81-100. https://doi.org/10.1016/0020-7519(85)90106-7
  63. Walker, A.R., Lloyd, C., Mcguire, K., Harrison, S.J., Hamilton, J., 1996. Integumental glands of the tick Rhipicephalus appendiculatus (Acari:Ixodidae) as potential producers of semiochemicals. J. Med. Entomol. 33 5, 743-759. https://doi.org/10.1093/jmedent/33.5.743
  64. Walker, A.R., Lloyd, C.M., McGuire, K., Harrison, S.J., Hamilton, J.G.C., 2014. Integument and Sensillum Auriforme of the Opisthosoma of Rhipicephalus appendiculatus (Acari: Ixodidae). J. Med. Entomol. 33, 734-742.
  65. Wharton, G.W., Richards, A.G., 1978. Water vapor exchange kinetics in insects and acarines. Annu. Rev. Entomol. 23, 309-328. https://doi.org/10.1146/annurev.en.23.010178.001521
  66. Wigglesworth, V.B., 1931. The physiology of excretion In a bloodsucking insect; Rhodnius prolixus; (Hemiptera, Reduviidae). J. Exp. Biol. 8, 411. https://doi.org/10.1242/jeb.8.4.411
  67. Wilkinson, P.R., 1953. Observations on the sensory physiology and behaviour of larvae of the cattle tick, Boophilus Microplus (Can.) (Ixodidae). Aust. J. Zool. 1, 345-356. https://doi.org/10.1071/ZO9530345
  68. Yoder, J.A., Benoit, .J.B., Bundy, M.R., Hedges, B. Z., Gribbins, K.M., 2009. Functional morphology of secretion by the large wax glands (Sensilla sagittiformia) Involved in tick defense. Psyche J. Entom. 2009, 1-8.
  69. Yoder, J.A., Hedges, B.Z., Tank, J.L., Benoit, J.B., 2009. Dermal gland secretion improves the heat tolerance of the brown dog tick, Rhipicephalus sanguineus, allowing for their prolonged exposure to host body temperature. J. Therm. Biol. 34, 256-265. https://doi.org/10.1016/j.jtherbio.2009.03.004
  70. Yoder, J.A., Pollack, R.J., Spielman, A., 1993. An ant-diversionary secretion of ticks: First demonstration of an acarine allomone. J. Insect. Physiol. 39, 429-435. https://doi.org/10.1016/0022-1910(93)90031-L