DOI QR코드

DOI QR Code

Physiological Function of Insulin-like Peptides in Insects

곤충 insulin-like peptide의 생리 조절 작용

  • Kim, Doo Kyung (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Lee, Jaemin (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • 김두경 (대구경북과학기술원 뉴바이올로지학과) ;
  • 이재민 (대구경북과학기술원 뉴바이올로지학과)
  • Received : 2022.01.24
  • Accepted : 2022.02.22
  • Published : 2022.03.01

Abstract

Insulin and insulin-like growth factor-1 (IGF-1) are hormones that play an important role in the physiological regulation of metabolism, growth, and longevity in vertebrates. Likewise, insulin-like peptides (ILPs), which are structurally similar to insulin and IGF-1, are crucial in insect physiology. In this review, we present an integrated summary of insect ILPs and their receptor signaling, which has been shown to be comparable to insulin and IGF-1 receptor signaling in vertebrates based on genetic studies of Drosophila melanogaster. Additionally, we review the control of ILP synthesis and secretion in the brain in response to nutrition, as well as the ILPs' physiological role in insect metabolism. Moreover, we discuss the contribution of ILPs to growth, development, reproduction, and diapause. Finally, we consider the possibility of targeting ILP receptor signaling in pest management.

인슐린(insulin)과 insulin-like growth factor-1 (IGF-1)은 척추동물에서 대사, 생장, 수명 등의 여러 생리대사를 조절하는 중요한 호르몬이다. 곤충에서도 IGF-1과 구조적으로 유사한 insulin-like peptide (ILP)들이 존재하며 이들이 곤충 생리 조절에 중요하게 관여함이 밝혀졌다. 이번 총설에서 곤충 ILP 및 초파리(Drosophila melanogaster) 유전체 분석을 통해 척추동물에 존재하는 인슐린 및 IGF-1 수용체 신호전달계와 유사하다고 확인된 ILP 수용체 신호전달계에 대해 설명하고자 한다. 추가적으로, 곤충 체내의 영양 상태에 따라 조절되는 뇌에서의 ILP의 합성과 분비, ILP에 의한 대사의 생리적 조절에 대해 논한다. 또한 ILP가 생장, 발달, 생식, 휴면에 기여하는 바도 논의하고, 마지막으로 ILP 수용체 신호전달계 제어를 통한 해충 방제에의 이용 가능성에 대해 제안하고자 한다.

Keywords

Acknowledgement

우리나라 곤충생리학과 화학생태학 분야의 발전 및 후학 양성에 기여하신 부경생 교수님의 헌신을 기리고, 이번 특별호 발간을 위해 노력해주신 한국응용곤충학회를 비롯한 많은 분들께 감사드립니다.

References

  1. Anzalone, A.V., Koblan, L.W., Liu, D.R., 2020. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824-844. https://doi.org/10.1038/s41587-020-0561-9
  2. Arpagaus, M., 1987. Vertebrate insulin induces diapause termination in Pieris brassicae pupae. Rouxs Arch. Dev. Biol. 196, 527-530. https://doi.org/10.1007/BF00399877
  3. Bier, E., 2022. Gene drives gaining speed. Nat. Rev. Genet. 23, 5-22. https://doi.org/10.1038/s41576-021-00386-0
  4. Bohni, R., Riesgo-Escovar, J., Oldham, S., Brogiolo, W., Stocker, H., Andruss, B.F., Beckingham, K., Hafen, E., 1999. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97, 865-875. https://doi.org/10.1016/S0092-8674(00)80799-0
  5. Bollenbacher, W.E., Gray, R.S., Whisenton, L.R., Muehleisen, D.P., Nogueira, B.V., 1997. Life cycle expression of a bombyxin-like neuropeptide in the tobacco hornworm, Manduca sexta. J. Insect Physiol. 43, 47-53. https://doi.org/10.1016/S0022-1910(96)00068-6
  6. Boo, K.S., 2001. Insect Hormones and Their Actions. Korean J. Appl. Entomol. 40, 155-196.
  7. Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., Hafen, E., 2001. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213-221. https://doi.org/10.1016/S0960-9822(01)00068-9
  8. Broughton, S.J., Piper, M.D., Ikeya, T., Bass, T.M., Jacobson, J., Driege, Y., Martinez, P., Hafen, E., Withers, D.J., Leevers, S.J., Partridge, L., 2005. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl. Acad. Sci. U.S.A. 102, 3105-3110. https://doi.org/10.1073/pnas.0405775102
  9. Caldwell, P.E., Walkiewicz, M., Stern, M., 2005. Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release. Curr. Biol. 15, 1785-1795. https://doi.org/10.1016/j.cub.2005.09.011
  10. Clancy, D.J., Gems, D., Harshman, L.G., Oldham, S., Stocker, H., Hafen, E., Leevers, S.J., Partridge, L., 2001. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104-106. https://doi.org/10.1126/science.1057991
  11. Cohen, P., 2006. The twentieth century struggle to decipher insulin signalling. Nat. Rev. Mol. Cell Biol. 7, 867-873. https://doi.org/10.1038/nrm2043
  12. DiAngelo, J.R., Birnbaum, M.J., 2009. Regulation of fat cell mass by insulin in Drosophila melanogaster. Mol. Cell. Biol. 29, 6341-6352. https://doi.org/10.1128/MCB.00675-09
  13. Duve, H., 1978. The presence of a hypoglucemic and hypotrehalocemic hormone in the neurosecretory system of the blowfly Calliphora erythrocephala. Gen. Comp. Endocrinol. 36, 102-110. https://doi.org/10.1016/0016-6480(78)90055-2
  14. Garofalo, R.S., 2002. Genetic analysis of insulin signaling in Drosophila. Trends Endocrinol. Metab. 13, 156-162. https://doi.org/10.1016/S1043-2760(01)00548-3
  15. Geminard, C., Rulifson, E.J., Leopold, P., 2009. Remote control of insulin secretion by fat cells in Drosophila. Cell Metab. 10, 199-207. https://doi.org/10.1016/j.cmet.2009.08.002
  16. Gronke, S., Clarke, D.F., Broughton, S., Andrews, T.D., Partridge, L., 2010. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 6, e1000857. https://doi.org/10.1371/journal.pgen.1000857
  17. Haeusler, R.A., McGraw, T.E., Accili, D., 2018. Biochemical and cellular properties of insulin receptor signalling. Nat. Rev. Mol. Cell Biol. 19, 31-44. https://doi.org/10.1038/nrm.2017.89
  18. Hwangbo, D.S., Gershman, B., Tu, M.P., Palmer, M., Tatar, M., 2004. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429, 562-566. https://doi.org/10.1038/nature02549
  19. Ikeya, T., Galic, M., Belawat, P., Nairz, K., Hafen, E., 2002. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 12, 1293-1300. https://doi.org/10.1016/S0960-9822(02)01043-6
  20. Kenyon, C., 2005. The plasticity of aging: insights from long-lived mutants. Cell 120, 449-460. https://doi.org/10.1016/j.cell.2005.02.002
  21. Koyama, T., Rodrigues, M.A., Athanasiadis, A., Shingleton, A.W., Mirth, C.K., 2014. Nutritional control of body size through FoxO-Ultraspiracle mediated ecdysone biosynthesis. Elife 3, e03091. https://doi.org/10.7554/elife.03091
  22. Layalle, S., Arquier, N., Leopold, P., 2008. The TOR pathway couples nutrition and developmental timing in Drosophila. Dev. Cell 15, 568-577. https://doi.org/10.1016/j.devcel.2008.08.003
  23. Masumura, M., Satake, S., Saegusa, H., Mizoguchi, A., 2000. Glucose stimulates the release of bombyxin, an insulin-related peptide of the silkworm Bombyx mori. Gen. Comp. Endocrinol. 118, 393-399. https://doi.org/10.1006/gcen.1999.7438
  24. Mizoguchi, A., Ishizaki, H., Nagasawa, H., Kataoka, H., Isogai, A., Tamura, S., Suzuki, A., Fujino, M., Kitada, C., 1987. A monoclonal antibody against a synthetic fragment of bombyxin (4K-prothoracicotropic hormone) from the silkmoth, Bombyx mori: characterization and immunohistochemistry. Mol. Cell. Endocrinol. 51, 227-235. https://doi.org/10.1016/0303-7207(87)90032-3
  25. Nagasawa, H., Kataoka, H., Isogai, A., Tamura, S., Suzuki, A., Ishizaki, H., Mizoguchi, A., Fujiwara, Y., Suzuki, A., 1984. Amino-terminal amino Acid sequence of the silkworm prothoracicotropic hormone: homology with insulin. Science 226, 1344-1345. https://doi.org/10.1126/science.226.4680.1344
  26. Nagasawa, H., Kataoka, H., Isogai, A., Tamura, S., Suzuki, A., Mizoguchi, A., Fujiwara, Y., Suzuki, A., Takahashi, S.Y., Ishizaki, H., 1986. Amino acid sequence of a prothoracicotropic hormone of the silkworm Bombyx mori. Proc. Natl. Acad. Sci. U.S.A. 83, 5840-5843. https://doi.org/10.1073/pnas.83.16.5840
  27. Normann, T.C., 1975. Neurosecretory cells in insect brain and production of hypoglycaemic hormone. Nature 254, 259-261. https://doi.org/10.1038/254259a0
  28. Oh, Y., Lai, J.S., Mills, H.J., Erdjument-Bromage, H., Giammarinaro, B., Saadipour, K., Wang, J.G., Abu, F., Neubert, T.A., Suh, G.S.B., 2019. A glucose-sensing neuron pair regulates insulin and glucagon in Drosophila. Nature 574, 559-564. https://doi.org/10.1038/s41586-019-1675-4
  29. Rostene, W., De Meyts, P., 2021. Insulin: A 100-Year-Old Discovery With a Fascinating History. Endocr. Rev. 42, 503-527. https://doi.org/10.1210/endrev/bnab020
  30. Rulifson, E.J., Kim, S.K., Nusse, R., 2002. Ablation of insulinproducing neurons in flies: growth and diabetic phenotypes. Science 296, 1118-1120. https://doi.org/10.1126/science.1070058
  31. Satake, S., Masumura, M., Ishizaki, H., Nagata, K., Kataoka, H., Suzuki, A., Mizoguchi, A., 1997. Bombyxin, an insulin-related peptide of insects, reduces the major storage carbohydrates in the silkworm Bombyx mori. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 118, 349-357. https://doi.org/10.1016/S0305-0491(97)00166-1
  32. Satake, S., Nagata, K., Kataoka, H., Mizoguchi, A., 1999. Bombyxin secretion in the adult silkmoth Bombyx mori: sex-specificity and its correlation with metabolism. J. Insect Physiol. 45, 939-945. https://doi.org/10.1016/S0022-1910(99)00074-8
  33. Scherer, T., Sakamoto, K., Buettner, C., 2021. Brain insulin signalling in metabolic homeostasis and disease. Nat. Rev. Endocrinol. 17, 468-483. https://doi.org/10.1038/s41574-021-00498-x
  34. Shelton, A.M., Long, S.J., Walker, A.S., Bolton, M., Collins, H.L., Revuelta, L., Johnson, L.M., Morrison, N.I., 2020. First field release of a genetically engineered, self-limiting agricultural pest insect: evaluating its potential for future crop protection. Front. Bioeng. Biotechnol. 7, 482. https://doi.org/10.3389/fbioe.2019.00482
  35. Sim, C., Denlinger, D.L., 2008. Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc. Natl. Acad. Sci. U.S.A. 105, 6777-6781. https://doi.org/10.1073/pnas.0802067105
  36. Sims, E.K., Carr, A.L.J., Oram, R.A., DiMeglio, L.A., Evans-Molina, C., 2021. 100 years of insulin: celebrating the past, present and future of diabetes therapy. Nat. Med. 27, 1154-1164. https://doi.org/10.1038/s41591-021-01418-2
  37. Smit, A.B., van Kesteren, R.E., Li, K.W., Van Minnen, J., Spijker, S., Van Heerikhuizen, H., Geraerts, W.P., 1998. Towards understanding the role of insulin in the brain: lessons from insulin-related signaling systems in the invertebrate brain. Prog. Neurobiol. 54, 35-54. https://doi.org/10.1016/S0301-0082(97)00063-4
  38. Taning, C.N.T., Van Eynde, B., Yu, N., Ma, S., Smagghe, G., 2017. CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns. J. Insect Physiol. 98, 245-257. https://doi.org/10.1016/j.jinsphys.2017.01.007
  39. Tatar, M., Kopelman, A., Epstein, D., Tu, M.P., Yin, C.M., Garofalo, R.S., 2001. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107-110. https://doi.org/10.1126/science.1057987
  40. Tougeron, K. 2019. Diapause research in insects: historical review and recent work perspectives. Entomol. Exp. Appl. 167, 27-36. https://doi.org/10.1111/eea.12753
  41. Verdu, J., Buratovich, M.A., Wilder, E.L., Birnbaum, M.J., 1999. Cell-autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nat. Cell Biol. 1, 500-506. https://doi.org/10.1038/70293
  42. Walkiewicz, M.A., Stern, M., 2009. Increased insulin/insulin growth factor signaling advances the onset of metamorphosis in Drosophila. PLoS ONE 4, e5072. https://doi.org/10.1371/journal.pone.0005072
  43. Weinkove, D., Neufeld, T.P., Twardzik, T., Waterfield, M.D., Leevers, S.J., 1999. Regulation of imaginal disc cell size, cell number and organ size by Drosophila class I(A) phosphoinositide 3-kinase and its adaptor. Curr. Biol. 9, 1019-1029. https://doi.org/10.1016/S0960-9822(99)80450-3
  44. Williams, K.D., Busto, M., Suster, M.L., So, A.K., Ben-Shahar, Y., Leevers, S.J., Sokolowski, M.B., 2006. Natural variation in Drosophila melanogaster diapause due to the insulin-regulated PI3-kinase. Proc. Natl. Acad. Sci. U.S.A. 103, 15911-15915. https://doi.org/10.1073/pnas.0604592103
  45. Yakar, S., Adamo, M.L., 2012. Insulin-like growth factor 1 physiology: lessons from mouse models. Endocrinol. Metab. Clin. North Am. 41, 231-247. https://doi.org/10.1016/j.ecl.2012.04.008